BiNbO$_4$ Ceramics in Microwaves: Synthesis and Characterization

T. S. M. Fernandes$^{(1)}$, A. J. M. Sales$^{(1)}$, J. S. Almeida$^{(1,2)}$, M. A. S. Silva$^{(1)}$, A. C. F. Silva$^{(2)}$ and A. S. B. Sombra$^{(1,2)}$

$^{(1)}$ Telecommunications and Materials Science and Engineering Laboratory (LOCEM)

sombra@fisica.ufc.br

$^{(2)}$ Physics Department, Federal University of Ceará - UFC, 60455-760 Fortaleza – CE – Brazil

www.fisica.ufc.br, * Corresponding author.

Abstract – The sintering behavior, microstructure and microwave dielectric properties of BiNbO$_4$ ceramics have been investigated. The phase-forming temperature (from orthorhombic to triclinic phase) of BiNbO$_4$ ceramics during sintering is lower than that (1025°C) of BiNbO$_4$ ceramics. The variations of dielectric constant and Q value are also investigated. These compounds were prepared by the traditional solid state method. The phase purity and lattice parameters were studied by powder X-ray diffraction (XRD).

In this research, the properties dielectrics in microwaves of BiNbO$_4$ with phase transition was investigated as a function of sintering temperature. It is necessary to study the intrinsic properties of BiNbO$_4$ with phase transition to predict and control the dielectric properties at microwaves frequencies [1]. BiNbO$_4$ ceramics were prepared by the conventional mixed oxide method. The raw materials, Bi$_2$O$_3$ and Nb$_2$O$_5$, which had higher purity than 99.9%, were mixed for 2 hours in mill of high rotation with balls of ZrO$_2$, later roasted to several temperatures by 3h. Crystalline phases of the calcined powders and the sintered specimens were identified by XRD pattern analysis in the range 20 – 80° of using Cu Kα radiation. However, the phase BiNbO$_4$ roasted in the temperature of 850 °C, it presented a quite good result. The dielectric constant (ε_r) and the unloaded Q($1/\tan\delta$) of the specimens at 4-6 GHz were measured by Hakki and Coleman’s method. It can be studied for application in microwave device materials and in ceramic capacitors of multilayers [1,2].

Figure 1: Dielectric permittivity (ε_r) as a function concentration

- a) Doping PVA and b) Doping TEOS.

Figure 2: a) Tan loss as a function temperature. b) Dielectric permittivity (ε_r) as a function temperature.
