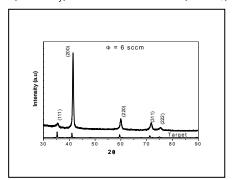
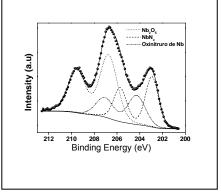


11th International Conference on Advanced Materials

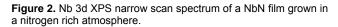
Rio de Janeiro Brazil September 20 - 25

Influence of Fabrication Parameters on Crystallization, Microstructure and Surface Composition of NbN Thin Films Deposited by RF Magnetron Sputtering.


J. E. Alfonso^{(1)*}, J. Buitrago⁽¹⁾ J. Torres^{(1),} J. F. Marco⁽²⁾ and B. Santos^(2,3)


 ¹*Grupo de Materiales con Aplicaciones Tecnológicas, Universidad Nacional de Colombia, A.A. 14490, Bogotá DC, Colombia. jealfonsoo@unal.edu.co
² Instituto de Química-Física "Rocasolano" CSIC, c/ Serrano, 119, 28006 Madrid, España
³ Universidad Autónoma de Madrid, Madrid, Spain.

Abstract -.


Due to their mechanical properties, their high fusion point and their thermal and chemical stability, transition metal nitrides present a great variety of applications spanning from hard coatings to electromagnetic radiation detectors. In particular, NbN has been studied as a potentially useful material for low temperature electronics, for instance, in superconductor tunnel junctions [1, 2]. Likewise, the possibility of using NbN as cathode in vacuum microelectronic devices [3] has been also considered. Other nitrides such as TiN and TaN have been used as diffusion barriers to prevent copper diffusion into silicon.

In this work, NbN_x thin films have been grown on glass by rf magnetron sputtering using a δ -NbN (99.99%) target. In particular, the influence of certain fabrication parameters (substrate temperature, power supplied to the target or additional N₂ flux in the preparation chamber) on the crystallization, microstructure and surface composition of the deposited films has been examined. The films have been characterized by X-Ray diffraction (XRD) at grazing angle in the θ -2 θ configuration, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-Ray photoelectron spectroscopy (XPS). XRD results show that films grown at a substrate temperature of 573 K and a power supplied to the target of 300 W present the same crystalline structure of the substrate, while films grown under these temperature and power conditions plus additional presence of N₂ during fabrication show a preferential orientation along the (200) plane of the face-centered cubic (fcc) δ -NbN structure (figure 1). TEM results show that the films obtained grow in a fcc structure, corroborating the XRD results. SEM results indicate that the films present columnar growth showing a high homogeneity and having an average thickness of 0.7 µm. XPS (figure 2) shows a complex surface composition of the films most external 5 nm, indicating the presence of niobium nitride (NbN_x), niobium oxy-nitride (NbN_xO_y) and niobium oxide (Nb₂O₅).

Figure 1: Grazing angle (2°) XRD pattern of a δ -NbN film grown at 553 K, 300 W and 6 sccm nitrogen flux. The XRD pattern of the target is included as a reference.

References

[1] T. Ishigaro, K. Matsushima, K. Hamasaki, J. Appl. Phys. 73, 1151 (1993).

[2] Z. Wang, A. Kawakami, Y. Uzawa, B. Komiyama. J. Appl. Phys, 78, 7837 (1996).

[3] Y. Gotoh, M. Nagao, T. Ura, H. Tsuji, J. Ishikawa, Nucl. Instr. Meth. Phys. Res. B Beam Interact. Matter. Atoms 1 (48) 925 (1999).