

## Rio de Janeiro Brazil September 20 - 25

## Production and characterization of magnetic double perovskite Sr<sub>2</sub>HoRuO<sub>6</sub>

- J.H. Velasco Zárate<sup>(1)\*</sup>, L.T. Corredor<sup>(1)</sup>, D.A. Landínez Téllez<sup>(1)</sup>, J. L. Pimentel Jr.<sup>(2)</sup>, P. Pureur<sup>(2)</sup>, J. Roa-Rojas<sup>(1)</sup>
  - (1) Grupo de Física de Nuevos Materiales, Departamento de Física, Universidad Nacional de Colombia, AA 14490, Bogotá D.C., Colombia, e-mail: jhvelascoz@bt.unal.edu.co
  - (2) Instituto de Física, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, RS, Brazil
  - \* Corresponding author.

**Abstract** – In this paper, we analyze the structural, morphological and magnetic properties of  $Sr_2HORuO_6$  (SHRO) compound by using X-ray diffraction, scanning electron microscope and a SQUID magnetometer. This sample was synthesized via solid-state reaction. The powder X-ray diffraction measurements and Rietveld analysis indicate that SHRO corresponds to double perovskite structure within the monoclinic system, space group P2<sub>1</sub>/n. SEM analysis reveals that SHRO presents a homogeneous morphology and grain size between 2-10  $\mu$ m, which is appropriate for the synthesis of ruthenocuprate Ru-1212Ho. Magnetic characterization indicates an antiferromagnetic behavior.

The double perovskite  $Sr_2HoRuO_6$  is a precursor in the synthesis of ruthenocuprate  $RuSr_2HoCu_2O_8$  (Ru-1212Ho). Ruthenocuprates are ceramic materials which show a magnetic and superconducting behavior simultaneously [1]. They have a multilayer structure similar to YBaCuO superconductor, with the atomic substitution of Y-Ba elements by Gd-*R*, with *R* a rare earth element. It is believed at present that the RuO<sub>6</sub> octahedron play a role similar to the Cu chains in YBaCuO, as a reservoir of charge carriers, generating the superconductivity in the CuO<sub>2</sub> planes [2]. The magnetic ordering could be explained considering that the ions in the Ru sublattice present an antiferromagnetic behavior with a tilt relative to the *c*-axis, leading to a resultant ferromagnetic component in the *a-b* plane [3]. Previous works have reported the production Ru-1212Ho ruthenocuprate by HPHT (High Pressure High Temperature) method by using  $Sr_2HoRuO_6$  and CuO [4]. Although it has not been observed existence of the superconducting state above the 4.2 K, there is a metal-insulator transition at 22 K and evidence of an interesting magnetic ordering at 136 K. The resultant magnetic moment indicates that Ho and Ru ordering is antiparallel.

In the present work  $Sr_2HoRuO_6$  compound was obtained by an enhanced solid-state reaction method, resulting in a high purity sample, in contrast with other reports [5-7]. It presents a double perovskite structure, into monoclinic system with space group P2<sub>1</sub>/n. X-ray patterns were studied by Rietveld refinement, through GSAS software. The lattice parameters founded and refinement parameters are listed in Table 1. The chemical formula of this perovskite is  $A_2(B,B')_2X_6$ , where B and B' positions are occupied by Ho<sup>3+</sup> and Ru<sup>5+</sup> ions, respectively [5]. SEM analysis indicates that the sample has a grain size between 2-10µm suitable for the synthesis of Ru-1212Ho. Magnetization measurements in function of applied field and temperature were carried out, which indicate an antiferromagnetic behavior with Néel temperature T<sub>N</sub> ≈ 15K. The implications of our results and a proposal of a new synthesis method of RuSr<sub>2</sub>HoCu<sub>2</sub>O<sub>8</sub> are widely discussed.

| a (Å)     | b (Å)     | c (Å)     | $\alpha$ (°) | $\beta$ (°) | $\gamma$ (°) | V (Å <sup>3</sup> ) | $\chi^2$ |
|-----------|-----------|-----------|--------------|-------------|--------------|---------------------|----------|
| 5.7702(5) | 5.7785(5) | 8.1465(6) | 90.000       | 90.22(1)    | 90.000       | 271.62(4)           | 1.76     |

Table 1. Parameters obtained by Rietveld refinement for SHRO compound.

## References

[1] T. Nachtrab et al. / C. R. Physique 7 (2006) 68-85.

- [2] V.P.S. Awana, Frontiers in magnetic materials, Springer Berlin Heidelberg, Germany.
- [3] J. D. Jorgensen, O. Chmaissem, H. Shaked et.al., Phys.Rev.B 63 (2001) 54440.
- [4] L.T. Yang et al. / Journal of Solid state Chemistry 177 (2004) 1072-1077.
- [5] Y. Doi and Y. Hinatsu, J.Phys.: Condens. Matter (1999) 4813-4820.

[6] R. Ruiz-Bustos et al. / Physica C 382 (2002)395-400.

[7] Andrew Perrone, Preparation of Sr<sub>2</sub>GdRuO<sub>6</sub> and Studies of its Magnetization and Electron Spin Resonance, 2007 NSF/REU Program, Physics Department, University of Notre Dame.