

Rio de Janeiro Brazil September 20 - 25

Electrochemical synthesis of nanostructured Zirconia functionalized with βcyclodextrin.

F. D. de Menezes^{(1)*}, R. Schneider⁽¹⁾, M. V. F. Lima⁽¹⁾ and R. T. Ribeiro⁽¹⁾

- (1) Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil. Tel: +55 81 2126 7454; e-mail: fredquim@gmail.com.
- * Corresponding author.

Abstract – Zirconia nanostructures were synthesized on FTO electrode surface in aqueous medium by cyclic voltammetry using carboxymethyl- β -cyclodextrin (cm- β -CD) like functionalizer. The voltammograms shows differences during the electro-deposition of ZrO₂ with cm- β -CD compared to ZrO₂ without cm- β -CD. Besides, AFM images shows better morphology definition of ZrO₂/ cm- β -CD system compared to ZrO₂. In short, well defined nanostructures of ZrO₂ functionalized with cm- β -CD were obtained like a promising system to the sensing of aromatic organophosphate compounds at aqueous medium.

Zirconia (ZrO_2) is an inorganic oxide with excellent thermal and chemical stabilities that have been used like a specific sensor material to organophosphate compounds detection [1-2]. In this work we synthesized Zirconia nanostructures with carboxymethyl- β -cyclodextrin (cm- β -CD) like functionalizer. These nanostructures were synthesized on FTO electrode surface by cyclic voltammetry of precursors at aqueous medium. The solution used was composed of NaCl 0.1 M (supporting electrolyte), ZrOCl₂ 0.01 M and cm- β -CD 0.1% (w/w). The deposition was achieved by cycling the potential between -1.2 and 0.00 V (vs. Ag/AgCl) at a scan rate of 10 mV/s for 10 consecutive cycles. Two samples were synthesized for comparison: ZrO₂ with cm- β -CD and ZrO₂ without cm- β -CD.

The voltammograms shows a gradual increase of oxidation current during the cycles of ZrO_2 deposition without cm- β -CD. In the case of ZrO_2 with cm- β -CD the increase of oxidation current was quenched at the fifth cycle of deposition that we correlated with coordination between ZrO_2 surface and carboxyl group of cm- β -CD.

The AFM analysis (Figures 1, 2 and 3) shows the surface topography of FTO electrode, ZrO_2 and $ZrO_2 / cm-\beta$ -CD, respectively. The nanostructures of ZrO_2 without cm- β -CD were formed in large numbers compared to sample with cm- β -CD. Besides, the morphology of $ZrO_2 / cm-\beta$ -CD nanostructures were better defined. This effect is probably due to the ZrO_2 surface functionalization by cm- β -CD that controls the deposition process of oxide on the substrate.

In conclusion, we obtained a morphological well defined nanostructures of ZrO_2 functionalized with cm- β -CD that is a promising system to the sensing of aromatic organophosphate compounds at aqueous medium.

Figure 1: AFM image of FTO electrode surface.

Figure 2: AFM image of ZrO_2 nanostructures without cm- β -CD.

Figure 3: AFM image of ZrO_2 nanostructures with cm- β -CD.

References

[1] G. Liu and Y. Lin. Anal. Chem. 77 (2005) 5894.

[2] M. Wang, Z. Li and Y. Gao. Sensor Lett. 6 (2008) 966.