

Rio de Janeiro Brazil September 20 - 25

Structural, microstructural, electrical and magnetic characterization of $Gd_{2-x}M_{x}Ru_{2}O_{7}$, where M = La or Ho

- M. D. R. Marques⁽¹⁾, F. S. Portela⁽²⁾, P. Barrozo^{(2)*}, A. A. M. Oliveira^{(2)**} and J. Albino Aguiar⁽²⁾
- (1) Programa de Pós-Graduação em Ciência de Materiais, Universidade Federal de Pernambuco, 50.670-901, Recife-PE, Brazil

(2) Departamento de Física, Universidade Federal de Pernambuco, 50.670-901, Recife-PE, Brazil pbs@df.ufpe.br, ** anaoliveira@df.ufpe.br

Abstract - Magnetic frustration has been object of intensive studies in recent years. Such characteristic is exhibited by the pyrochlores. In this work, ruthenium pyrochlores, Gd_{2-x}M_xRu₂O₇, were prepared by the traditional solid-state reaction method, where M = La or Ho. A systematic study of the electrical and magnetic properties of such compounds was conducted varying the Lanthanum and Holmium content in the Gd₂Ru₂O₇ matrix.

Compounds, which present pyrochlore structure $R_2B_2O_7$ (R = rare earth and B is a transition metal), exhibit a wide variety of electrical and magnetic properties [1]. The electrical properties can change from highly insulate to metal-poor behavior. The most remarkable magnetic characteristic is the spin-glass transition with apparent absence of magnetic long-range order [2]. In particular, the material studied here has ruthenium and gadolinium occupying the B and R sites, respectively. Ruthenium pyrochlore structure has metal-semiconductor transition depending on the amount of oxygen vacancies and conditions of synthesis [3].

The samples were prepared by solid-state reaction method. Stoichiometric amount of Gd₂O₃, RuO₂, La₂O₃ and HoO₂ were mixed and submitted to heat treatment between 1000 - 1100°C for 96 h with intermediate regrindings. The X-rays diffractograms showed low amounts of impurity phases (Fig.1). The electrical properties were analyzed by resistance as a function of temperature, revealing a metal-insulation transition (Fig.2). The magnetic measurements will be conducted using a MPMS (Magnetic Property Measurement System) Magnetometer by Quantum Design via measurements of DC magnetization vs. temperature and magnetic field. We believed that the doped system can induced a superconducting behavior.

Fig.1 - X-rays diffractogram.

Work financed by CAPES and CNPq.

References:

- [1] J. E. Greedan, J. Mater. Chem. 11, 37 (2001).
- [2] M. J. Harris, M. P. Zinkin and T. Zeiske, Phys. Rev. B 52, R707 (1995).
- [3] S. Munõz Pérez, R. Cobas and J. Albino Aguiar, Physica C 435 50 (2006).