ICAM2009

#### 11<sup>th</sup> International Conference on Advanced Materials

Rio de Janeiro Brazil September 20 - 25

# Oxygen Vacancies Diffusion Model for Electric Pulse Resistance Switching in Oxide Based Memory Devices

Marcelo J. Rozenberg $^{(1,2)}$ , María José Sánchez $^{(3)^*}$  and Ruben Weht $^{(4)}$ 

- 1) Departamento de Física FCEyN UBA Buenos Aires, Argentina
- 2) LPS Université de Paris-Sud, Bat.510, Orsay 91405, Francia.
- 3) Centro Atómico Bariloche and Instituto Balseiro, CNEA CONICET Bariloche, Argentina. majo@cab.cnea.gov.ar
- 4) Gerencia Investigación y Aplicaciones, CNEA CONICET Buenos Aires, Argentina.
- \* Corresponding author.

#### Abstract - Maximum 100 words.

The electric pulsed induced resistive switching (RS) in transition metal oxides involves a non-volatile change in the resistance after the application of electrical pulses, and may be a useful effect for next generation of electronic memory devices [1].

Despite a bursting body of experimental data that is rapidly becoming available [1,2] the precise mechanism behind the physical effect of RS remains elusive.

Here, we introduce a model for RS in transition metal oxides which builds on our previous work [3-4]. The model incorporates the migration of oxygen vacancies at the

dielectric-electrode interfaces under strong electric fields, and their effect on the local resistivities. The behavior of the model under a typical voltage protocol (Fig.1) qualitatively reproduces non-trivial resistance hysteresis effects reported in the literature [5,6].

Our results further elucidate the role of geometrical symmetry in the device design, and most significantly, clarify the crucial role of Schottky interfaces for the resistive switching effect.

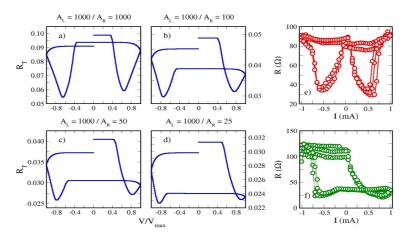



Figure 1: Resistive hysteresis loops obtained for an increasing degree of asymmetry in the dielectric-electrodes interfaces . In the right panels we show the experimental data for two manganite samples, one symmetric (e) ) and the other that were rendered asymmetric by means of intense and fixed polarity pulsing (f)). The experimental hysteresis loops were obtained by pulsing in current-control mode, similarly as in Ref.[6]. Notice the qualitative similarity of panels a) and e), and d) and f) respectively.

.



## 11<sup>th</sup> International Conference on Advanced Materials

Rio de Janeiro Brazil September 20 - 25

### References

- [1] R. Wasser and M. Aono, Nat. Mat. 6, 833 (2007).
- [2] G.I. Meijer, Science 319, 1625 (2008).
- [3] M.J. Rozenberg, I.H. Inoue and M.J. Sánchez, Phys. Rev. Lett. 92, 178302 (2004).
- [4] M.J.Rozenberg, I.H.Inoue and M.J.Sánchez, Appl. Phys. Lett 88, 033510 (2006).
- [5] Y.B. Nian, J. Strozier, N.J. Wu, X. Chen, and A. Ignatiev, Phys. Rev. Lett. 98, 146403 (2007).
- [6] M. Quinteiro et al. ,Phys. Rev. Lett. 98, 116601 (2007).