CAM2009
$11^{\text {th }}$ International Conference on Advanced Materials

September $20-25$

Pre-Placed Laser Cladding of $\mathrm{Al}_{92} \mathrm{Fe}_{3} \mathrm{Cr}_{2} \mathrm{Mn}_{3}$ quasicrystals former alloy on 7021 aluminum alloy

P. Gargarella ${ }^{(1)^{\star}}$, R. Vilar $^{(2)}$, C. S. Kiminami ${ }^{(3)}$, C.T. Rios ${ }^{(3)}$, W. J. Botta ${ }^{(3)}$ and C. Bolfarini ${ }^{(3)}$

(1) Programa de Pós-graduação em Ciência e Engenharia de Materiais, Universidade Federal de São Carlos, Rodovia Washington Luiz, Km 235, 13565-905, São Carlos, SP, Brazil, piterg@gmail.com
(2) Departamento de Engenharia de Materiais, IST-UTL, Av. Rovisco Pais, 1049-001, Lisbon, Portugal, rui.vilar@ist.utl.pt
(3) Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Rodovia Washington Luiz, Km 235, 13565-905, São Carlos, SP, Brazil, Kiminami@power.ufscar.br, triveno@ufmt.br, wjbotta@ufscar.br, cbolfa@power.ufscar.br

* Corresponding author.

In the present work, coating of the quasicrystalline phase-forming $\mathrm{Al}_{92} \mathrm{Fe}_{3} \mathrm{Cr}_{2} \mathrm{Mn}_{3}$ alloy was produced by pre-placed laser cladding on substrate of 7021 aluminum alloy. A 2 kW CW Nd:YAG laser was used to produce the coating with a gas-atomized $\mathrm{Al}_{92} \mathrm{Fe}_{3} \mathrm{Cr}_{2} \mathrm{Mn}_{3}$ powder. The coating was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) and a thermal analysis was carried out by differential scanning calorimetry (DSC). The formation of quasicrystalline icosahedral phases in the coating and the latter's thermal stability up to $467^{\circ} \mathrm{C}$ were confirmed by XRD and DSC. The microstructure of the coating presented aggregates with a five-arm star morphology and a quasicrystalline phase at its center, and had a composition of $\mathrm{Al}_{82,5} \mathrm{Fe}_{5,8} \mathrm{Cr}_{7,5} \mathrm{Mn}_{3,6} \mathrm{Zn}_{0,6}$. The coating hardness increases with depth to reach a maximum value of 163 HV near the substrate/coating interface. These results demonstrate the possibility of producing a coating with quasicrystalline phases on ordinary aluminum alloy substrates, with the following benefits provided by the presence of the metastable phase; high hardness and stiffness allied to low fracture toughness, low electrical and thermal conductivities, and low friction coefficients.

