La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O protective coatings for solid oxide fuel cell interconnect deposited by screen printing

Shyong Lee^{1, a}, Chun-Lin Chu^{1, b*}, Ming-Jui Tsai^{1, c} and Jye Lee^{2, d}

¹Department of Mechanical Engineering, National Central University, Chung-li,

Taiwan

²Department of Electrical Engineering, Chang Gung University, Tao-Yuan, Taiwan

^ashyong@cc.ncu.edu.tw, ^bjenlen.boy@msa.hinet.net, ^cminruesy@ms58.hinet.net and

^drylee@mail.iner.org.tw

*Corresponding author. Tel.: +886 3 4267 377; fax: +886 3 4254 501.

E-mail address: jenlen.boy@msa.hinet.net

Abstract

La_{0.6}Sr_{0.4}Co_{0.8}Fe_{0.2}O₃ (LSCF) is synthesized by a screen printing method as a Crofer22 APU interconnect for solid oxide fuel cells (SOFC). The above (LSCF) coated alloys were first checked for their compositions, morphology and interface conditions. It was then treated in a simulated oxidizing environment, 800C for 200hrs. The results showed that the LSCF film can change the oxidation behavior of Crofer22 APU. The alloy coated with LSCF sintering at 1050°C in N₂ atmosphere, the adhesion between the LSCF layer/alloy interface is excellent. After long-term electric resistance measurement, ASR for alloy coated with LSCF was less. The alloy coated with LSCF use for metallic interconnect could reduce working temperature for SOFC. *Keywords:* Solid Oxide Fuel Cell (SOFC); Interconnect; Screen Printing