Excimer Laser Wet Oxidisation of Amorphous Hydrogenated Silicon.

Saydulla Persheyev, Younchang Fan, Mervyn John Rose

Amorphous Materials Group, Department of Electronics Engineering and Physics,

University of Dundee, Dundee, UK

Abstract

We present here results of excimer laser wet oxidation of submicron thick amorphous hydrogenated silicon films (a-Si:H) deposited on silicon wafer. The a-Si:H film irradiation has been done by multiple-pulse, large-spot, 20 nano-second KrF (248 nm) excimer laser with a slope beam profile at a laser fluencies (140-300 mJ/cm²) near to silicon ablation threshold. The oxygen and hydrogen content and bonding in thin films were analysed by Fourier Transform Infrared Spectroscopy (FTIR) techniques in the range of 400-4000 cm⁻¹ wavenumbers. We demonstrate that presence of water molecules on the silicon surface will increase oxidation by 30-40%. The bonded hydrogen content in the films after oxidation annealing is decreased from 12at.% down to around one atomic percent.