

Rio de Janeiro Brazil September 20 - 25

Transport and thermoelectric properties of multi-phase LSCuO samples grown by citrate sol-gel method

J.E. Rodriguez^{(1)*}, L.C.Moreno⁽²⁾ and D. Cadavid⁽¹⁾

- (1) Department of Physics, Universidad Nacional de Colombia, **Thermoelectric Materials** group e-mail: jerodriguezl@unal.edu.co
- (2) Department of Chemistry, Universidad Nacional de Colombia.
- * Corresponding author.

Abstract – We have studied the thermoelectric properties of La_{2-x}Sr_xCuO_{4-δ}/La₂CuO₄ (x=0.05, 0.10 and 0.15) samples grown by using the citrate sol-gel method followed by high temperature sintering. Transport properties were studied from electrical resistivity $\rho(T)$ and Seebeck coefficient S(T) measurements in the temperature range between 100 and 290K. The magnitude of Seebeck coefficient S(T) and electrical resistivity $\rho(T)$ decreases with the Sr content from 230 μ V/K to 20 μ V/K and from 20 mΩ-cm to 1 mΩ-cm, respectively. The temperature behavior of S(T) and $\rho(T)$ was interpreted in terms of small-polaron hopping mechanism. From S(T) and $\rho(T)$ data it was possible to calculate the thermoelectric power factor PF, which reaches maximum values close to 18 μ W/K²-cm.

The discovery of large positive Seebeck coefficient in the metallic oxide Na_xCoO₂ has shown the great potenciality of oxides as thermoelectric materials for a wide range of temperature applications. Since then, numerous studies have been devoted to the research of thermoelectric properties of different families of oxides[1]. La_{2-x}Sr_xCuO_{4-δ} (LSCuO) compounds are members of perovskites-family, they adopt tetragonal symmetry and K₂NiF₄-type structure. The majority of its transport phenomena take place throughout the CuO₂ planes, which causes a marked asymmetry of their transport properties and a metallic or semiconducting behavior, which depend on the Sr content and critically on the oxygen stoichiometry.

Polycrystalline samples were prepared using citrate sol-gel method followed by high temperature sintering. The x-ray diffraction analysis shows the presence of tetragonal La_{2-x}Sr_xCuO_{4-δ} and orthorhombic La₂CuO₄ as majority phases. On the other hand, it was clearly seen that with increasing the Sr level the grain size decreases from 0.8 μ m to 0.4 μ m, which have important effects on the transport properties and specially on the heat flow across the samples.

So long as, the electrical resistivity shows a weak semiconducting dependence whose magnitude decreases with the Sr content, the Seebeck coefficient is positive over the measured temperature range, suggesting a hole-type conduction.

In the temperature behavior of Seebeck coefficient two contributions were identified; the first one is given by carrier diffusion, which according to the Mott-Jones model is proportional to temperature and the second one is proportional to 1/T, which in these correlated compounds is ascribed to hopping of small pollarons. Therefore, S(T) can be described by an expression of the form: $S(T)=\alpha T+\beta/T$.

The power factor for thermoelectric conversion was calculated for these perovskite-ceramics. Which reaches maximum values close to 18 μ V/K²-cm. These values can be compared with the state-of-the-art of conventional semiconducting thermoelectric materials. This behavior could be a result of the presence of semiconducting La₂CuO₄, which improve the thermoelectric properties of metallic La_{2-x}Sr_xCuO_{4-δ}, becoming these compounds promising thermoelectric material for low temperature thermoelectric applications.

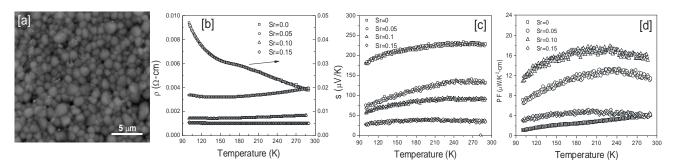


Figure 1. Morphological structure, electrical resistivity, Seebeck coefficient and thermoelectric power factor of LSCuO/LCuO samples grown by citrate sol-gel method followed by sintering processes.

References

[1] I. Terasaki, Y. Sasago and K. Uchinokura, *Phys. Rev.B* ,**56**,12684-12689(1997); Y. Yakabe, K. Kikuchi, I. Terasaki, Y. Sasago and K. Uchinokura, *Proc.* 16th Int. Conf. on Thermoelectrics, 523-527(1997).