

Rio de Janeiro Brazil September 20 - 25

Development of dye-sensitized Solar Cell Module with a reflector of micro structures

Y. W. Kim^{(1)*}, I. D. Shin⁽¹⁾, S. C. Choi⁽¹⁾, D. W. Lee^{(2)*}

- (1) Department of Nano Fusion Technology, Pusan National University, Miryang 627-706, Korea, email: kims425@pusan.ac.kr
- (2) Department of Nano science and Technology, Pusan National University, Miryang 627-706, Korea

Abstract

Recently, The Solar Cell Energy is presently promising because of Oil Inflation, fuel exhaustion, global warming and space development. Many advanced countries rapidly develop the solar cell energy under a nation enterprise. Particularly, Dye-sensitized solar cell (DSC) that is the 3rd generation solar cell has low-cost of manufactures about 1/3~1/5 times compared with the silicon solar cell. Accordingly, the DSC is constantly researched globally.

In this paper, we have studied a reflector recovering the loss light for improvement conversion efficiency of DSC. The reflector angle was determined by optical analysis program. Micro pyramid patterns with the 112.6° were processed using the ultra precision shaping machine in order to maximize the conversion efficiency due to increasing light distance. In addition, a comparative study carried out about the conversion efficiency. We made the DSC that is attached reflector with mirror angle 112.6° below. We measured conversion efficiency of solar cell by solar simulator that can irradiate 100mW/cm2 (1Sum, AM 1.5).

As a result of this experiment, the DSC with micro pyramid mirror improves efficiency about 2% against the DSC with black plate. Reflected light can cross more dye of TiO2 Layer. Therefore, Voltage of maximum power (Vmp) increases other reflector with different mirror angle.

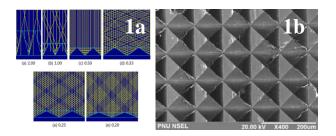


Figure 1: a) Computing calculation of mirror angle. b) Machined reflector with micro pyramid structure.

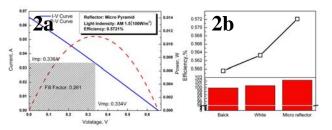


Figure 2: a) I-V and P-V curve of micro pyramid reflector. b) Comparison efficiency of each parameter.