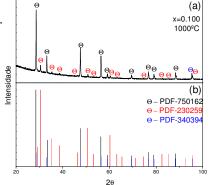


Rio de Janeiro Brazil September 20 - 25

Synthesis and Characterization of the TiO2-doped (CeO2)0,8(GdO1,5)0,2


R. I. V. SILVA^{(1)*}; S. DOMINGUES⁽¹⁾, A. A. CAVALHEIRO⁽²⁾; D. I. SANTOS⁽³⁾ and M. J. SAEKI⁽¹⁾

- (1) DQB, IB, Universidade Estadual Paulista Unesp, Botucatu, SP, Brasil, email: rivs83@hotmail.com.
- (2) DQ, Universidade Estadual do Mato Grosso do Sul UEMS, Naviraí, MS, Brasil.
- (3) DF, FC, Universidade Estadual Paulista Unesp, Bauru, SP, Brasil.
- * Corresponding author.

Abstract – $[(CeO_2)_{0.8}(GdO_{1.5})_{0.2}]_{1-y}(TiO_2)_y$, where $0 \le y \le 0.1$, was synthesized by Polymeric Precursor Method. The thermal analysis showed that the majority of organic compounds derived from the synthesis is eliminated up to 700°C. The XRD results showed that the samples crystallized as Fm3m cerianite single phase if they are calcined at 700°C. When calcined at 1000°C they are monophasic if $y \le 0.05$ being the secondary phase, $Gd_2Ti_2O_7$ (s.g. Fd3m), was observed in the sample with $y \ge 0.1$. The analysis by EDX confirmed the nominal composition. The BET analysis showed that the samples treated at 700°C are mesoporous, but significant surface and porosity loss took place at 1000°C. The MEV image confirmed such a result.

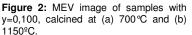

Among several types, the Solid Oxide Fuel Cell (SOFC) shows the higher efficiency for the energy conversion. The doped CeO₂ have attracted much attention as an alternative material for anodic support due to its high ionic and electronic conduction [1]. Titanium oxide (TiO₂) is added to improve this property as well as it is used as a catalyst support for the several oxidation reactions [1,2]. This work aims to investigate TiO₂ effect on the structure of cerium/gadolinium oxide, $[(CeO_2)_{0.8}(GdO_{1.5})_{0.2}]_{1-y}(TiO_2)_y$, where $0 \le y \le 0.1$. The materials were synthesized by Polymeric Precursor Method and calcined at 700°C, 1000°C and 1150°C for 4h in air. The characterization was carried out by simultaneous thermal analysis (TG/DTA), X-ray Diffraction (XRD) (refining by Rietveld Method), Scanning Electronic Microscopic (MEV), Energy Dispersive X-ray (EDX) and porosity analysis (BET). The thermal analysis showed that the majority of organic compounds derived from the synthesis is eliminated up to 700°C. The XRD results showed that the samples crystallized as Fm3m cerianite single phase when they are calcined at 700°C. When calcined at 1000°C the sample is monophasic up to y=0.05. For $y\ge 0.1$ the secondary phase, $Gd_2Ti_2O_7$ (s.g. Fd3m), was observed (Fig.1). The analysis by EDX confirmed the nominal composition for all samples (Tab.1). The textural analysis of samples treated at 700°C showed that they are a mesoporous solid, but a significant loss of the porosity was observed when calcined at 1000°C. The MEV image confirmed such a result (Fig.2).

Table 1: Energy Dispersive X-ray (EDX) and Surface Area (BET) of <u>ceramic</u> [(CeO ₂) _{0.8} (GdO _{1.5}) _{0.2}] _{1-y} (TiO ₂) _y with 0 <y<0.1, 700°c.<="" at="" calcined="" th=""></y<0.1,>						
Material	Y	EDX (Atomic %)			S _{BET} (m²/g)	
	(%Ti Nominal)	Ce	Gd	Ti	-	e
GDC:Ti0	0.000	0.8052	0.1948	-	4.5858	Intensidade
GDC:Ti2.5	0.025	0.7942	0.1829	0.0229	11.6679	Inte
GDC:Ti5	0.050	0.7727	0.1780	0.0490	15.7300	_
GDC:Ti10	0.100	0.7281	0.1713	0.1006	16.5050	_

Figure 1: (a) XRD diffraction patterns of the sample annealed at 1000°C with y=0.100 and (b) Powder Diffraction File (PDF) of gadolinium-doped cerium (black), gadolinium titanate (red) and cerium oxide (blue).

References

E.Y. Pikalova; V.I. Maragou; A.K. Demin; A.A. Murashkina and P.E. Tsiakaras, Solid State Ionics 179 (2008) 1557–1561.
P.K. Cheekatamarla and C.M. Finnerty, J. Power Sources, 160 (2006) 490–499.