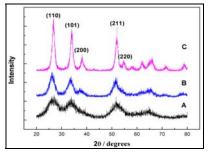


11th International Conference on Advanced Materials

Rio de Janeiro Brazil September 20 - 25

Synthesis of SnO₂ nanoparticles for Dye-Sensitizer Solar Cells

J. J. da Silva^{(1)*}, R. Parra⁽²⁾, E. C.Muniz⁽¹⁾, M. S. Góes⁽¹⁾, E. Joanni⁽¹⁾, P. R. Bueno⁽¹⁾


(1) Department of Physical Chemistry, Institute of Chemistry, UNESP, Araraquara, SP, Brazil.(2) INTEMA, Instituto de Investigaciones en Ciencia y Tecnología de Materiales, Mar del Plata, Argentina.

'josieljs@hotmail.com; Rua F. Degni s/n, 14800-900 Araraquara, SP, Brazil.

Abstract – SnO₂ nanostructured anodes were prepared by sol-gel methodology combined with hydrothermal synthesis. By means of the nanoparticle dispersion obtained after the hydrothermal synthesis a paste for deposition of films onto conducting glass substrate was prepared. The films were heat-treated at 420°C for 20 minutes. The dispersion presented crystalline SnO₂ nanoparticles of about 10nm (figure 2). The films showed homogeneous morphologies and thicknesses nearly 8 μ m. These films have a high potential for application in Dye-Sensitizer Solar Cels (DSSC's).

Studies of materials that can be used as anodes in DSSC's are of great interest for the development of these devices. Tin dioxide (SnO_2) has attracted attention due to its higher electronic conductivity and mobility with respect to TiO₂ which have showed the best results for this application [1]. Nevertheless, the energy conversion efficiencies reported for DSSC's assembled with SnO_2 anodes are rather poor [1,2]. Thus, SnO_2 has been intensively studied in order to improve the conversion efficiency of DSSC's.

In this work we report the synthesis of SnO_2 dispersions for nanostructured films applied to DSSC's. SnO_2 nanoparticles were precipitated from $SnCI_4.5H_2O$ aqueous solutions through the addition of ammonium hydroxide (NH₄OH, 29%) until pH 5-6. The resulting material was washed several times with deionized water to eliminate chlorine ions. The Cl⁻free SnO_2 nanoparticles were dispersed in water with the addition of a non-ionic surfactant and hydrothermally treated at 240°C in an electric furnace. The obtained dispersions were washed with ethanol and acetone and used for preparing a suitable paste for screen-printing by adding an ethanolic solution of ethylcellulose and anhydrous terpineol. The paste was concentrated until $SnO_2-20\%$ wt. Films were deposited onto glass slides coated with Fluorine-doped Tin Oxide (FTO) (10Ω sq⁻¹, Solaronix) by screen-printing [3] and sintered at 420°C. Polyethyleneglycol (PEG-400) was added to the paste in order to increase porosity. The dispersions and films were characterized by X-ray diffraction (XRD). The hydrothermally synthesized dispersion consisted in crystalline rutile SnO_2 (Figure 1). Films were studied with scanning electron microscopy (FEG-SEM) and profilometry. Figure 2 shows the porous and homogeneous structure of particles around 10nm. The thickness was close to 8μ m. These characteristics indicate that the obtained films are appropriate for DSSC's applications.

Figure 1: XDR patterns of powder obtained A) without hydrothermal, B) with hydrothermal by 180°C/20 hours, and C) 240°C/24 hours.

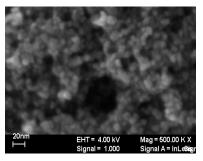


Figure 2: FEG-SEM of particles obtained after hydrothermal treatment 240°C/24 hours.

References

[1] Green, A.N.M.; Palomares, E.; Haque, S.A.; Kroon, J.M.; Durrant, J.R. *J. Phys. Chem. B*, 109 (2005) 12525. [2] Fukai, Y.; Kondo, Y.; Shogo, M.; Suzuki, E.; *Electrochem. Comm.* 9 (2007) 1439-1443.

[3] Ito, S.; Murakami, T.N.; Comte, P.; Liska, P.; Grätzel, C. Thin Solid Films 516 (2008) 4613-4619