

11th International Conference on Advanced Materials Bio de Janeiro Brezil Sentember 20 - 25

Carbon Nanotube/felt composite as matrix for electrodes of lithium ion batteries

E. Y. Matsubara and J. M. Rosolen

Department of Chemistry, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil *rosolen@ffclrp.usp.br

Abstract – CNT/felt composite can be used as support to development of electrodes of Li-ion battery, as shown in this work. The composite was prepared through chemical vapour deposition and was used to support the xerogel V_2O_5 . The characterization of electrodes was carried out using electrochemical techniques and scanning electron microscopy (SEM). The V_2O_5 supported on CNT/felt matrix provide a excellent cyclability and a reversibility specific capacity of 160 mAh.g⁻¹ between 4 and 2V versus Li/Li⁺ potential at a constant discharge/charge current of 95 mA.g⁻¹.

The electrodes traditionally used in lithium ion battery are prepared using polymer binders and metal foils, grids. In spite of the commercial successful of these electrodes in Li-ion battery the recycling of Li-ion battery is not an easy task. In addition, this kind of electrode requires a large geometric area to expose a large amount of active material. Thus, the development of a new type of design electrode is welcome for the Li-ion batteries. Here we show that carbon felt with good electronic conductivity is an alternative to the metal foils or grids used in Li-ion battery. The carbon substrate when loaded with carbon nanotubes becomes a composite material that allows act like an electronic support for several nanomaterials [1]. The active material used to demonstrate the viability of CNT/felt as support of lithium intercalation nanomaterials was the vanadium oxide (V_2O_5). This material can presents low fading capacity and reversible specific capacity whose value depend on structural order, and it is generally found larger than the theoretical capacity of LiV₂O₅ (147.38 mAh.g⁻¹). The carbon felt/CNT is also a lightweight composite and as the CNTs are bonded on carbon fibers of felt this one can not be breathed or easily extract from the substrate.

To preparation of CNT/felt composite was used the Chemical Vapor Deposition and the $xg-V_2O_5$ was prepared as described elsewhere [2]. The CNT/felt was immersed in the gel of xero-gel V_2O_5 ($xg-V_2O_5$). After the $xg-V_2O_5$ loading the $xg-V_2O_5/CNT$ /felt electrode was heated for 1 hour in 200°C under vacuum and more 3 hours in 300°C at room atmosphere. The electrochemical characterization of disk electrodes with 8mm of diameter was carried out using 1 mol.L⁻¹ LiPF₆ in mixtures of ethylene carbonate and dimethyl. Figure 1 shows the SEM picture of composite $xg-V_2O_5/CNT$ /felt electrode, and its electrochemical behavior under linear potential sweep chronoamperometry (voltamogramm). The SEM characterization shows that nanostructure of carbon substrate was completely filled by the $xg-V_2O_5$ yields an electrode with good mechanical stability and electrical conductivity. It is possible to see in high magnification that each carbon fiber of felt is cover by the $xg-V_2O_5$. The voltammogram at 0.5V.s⁻¹ shown in Figure 1 confirms that the answer of $xg-V_2O_5/CNT$ /felt composite is control by the oxide and the electrode present low fading capacity. The $xg-V_2O_5$ composite electrode presents a reversibility specific capacity of 160 mAh.g⁻¹ at a constant discharge/charge current of 95 mA.g⁻¹ between 4 and 2V versus Li/Li⁺. Therefore, these results show that the CNT/felt can be effectively used to development of electrodes of lithium ion battery without the use of metal foils.

Figure 1: SEM picture of V₂O₅/CNT/felt electrode and its electrochemical behavior during linear potential scan.

References

^[1] J. M. Rosolen et all, INPI Patent deposit (2009).