

Rio de Janeiro Brazil September 20 - 25

## Thick mesoporous TiO<sub>2</sub> nanostructured films obtained by screen-printing for application in dye-sensitized solar cells

- E. C. Muniz<sup>(1)\*</sup>, R. Parra<sup>(2)</sup>, M. S. Góes<sup>(1)</sup>, J. J. da Silva<sup>(1)</sup>, E. Joanni<sup>(1)</sup>, J. A. Varela<sup>(1)</sup> and P. R. Bueno<sup>(1)</sup>
  - (1) Instituto de Química, UNESP, Araraquara, SP e-mail: elainecmuniz@iq.unesp.br
  - (2) INTEMA, Instituto de Investigaciones en Ciencia y Tecnología de Materiales, Mar del Plata, Argentina.
  - \* Corresponding author.

**Abstract** – Anatase  $TiO_2$  colloidal dispersions were obtained by hydrothermal treatments (200°C) of titanium isopropoxide gels modified with acetic acid in the presence of a non-ionic surfactant and  $TiO_2$  mesoporous films with thickness about 10  $\mu$ m for application in dyesenitized solar cells were prepared by screen-printing method. The screen-printing method allowed to prepare reproducible films with desired properties like thickness and porosity.

Dye-Sensitized Solar Cells (DSSC's) have attracted much attention as a clean alternative to solar energy conversion. These cells consist in a semiconducting-film acting as an anode, an electrolyte and a counter-electrode. The DSSC's are generally built upon titanium dioxide-based mesoporous film anodes [1]. For this application, the anatase phase of  $TiO_2$  is considered essential for achieving high conversion efficiencies [2].Furthermore, the thickness and area control are very important to obtain reproducible DSSC's devices.

In this work, anatase  $TiO_2$  colloidal dispersions were prepared and used to fabricate thick porous films. The dispersions were obtained by hydrothermal treatments (200°C) of titanium isopropoxide gels modified with acetic acid in the presence of a non-ionic surfactant. Then, it was added absolute ethanol, terpineol anhydrous and ethyl cellulose in the anatase  $TiO_2$  dispersion, resulting in 23% weight paste [3]. The pastes were spread onto F-doped  $SnO_2$ -coated glass and heat-treated at 450°C, resulting in films with mean thickness of 10 µm (Fig. 1). The  $TiO_2$  films present desired properties for application in DSSC's, like partial sintering of the nanoparticles, narrow particle size distribution (20 nm) and high porosity, as shown in the SEM-FEG image (Fig. 2).

We conclude that hydrothermal treatments were efficient to obtain  $TiO_2$  colloidal dispersions and synthesized films. In addiction, reproducible films (thickness around 10  $\mu$ m) were successfully prepared by the screen-printing method.

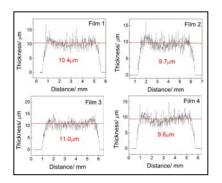



Figure 1: Profilometry of the  $\text{TiO}_2$  films obtained.

## References

- [1] O'Regan, B.; Grätzel, M. Nature **353** (1991)737.
- [2] M. A. Green, et.al. Prog. Photovolt: Res. Appl. 14 (2006) 455.
- [3] S. Ito, et. al. *Thin Solid Films* **516** (2008) 4613-4619.

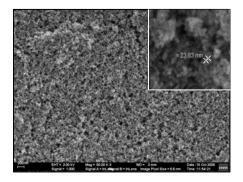



Figure 2: SEM-FEG image of the  $TiO_2$  film heat-treated at 450°C.