Dye functionalized nanosized SiO₂ for photodynamic therapy

Sheila southgate de Oliveira(IC)*, Rodrigo José Corrêa(PQ), Célia M. Ronconi (PQ), Gleiciani de Q. Silveira (PG), Instituto de química da UFRJ, Rio de Janeiro.

e-mail:she southgate@yahoo.com.br

Introduction

Malign tissues can be damages by $^{1}O_{2}$ generated in situ, from a dye sensibilization in photody therapy(PDT), dye functionalization may reduce a excited state desactivation by the medium, thus, reducing necessary drug dose. This work evalueted chemically linking a dye to nanosized SiO₂ in order to generate $^{1}O_{2}$ for PDT purposes.

Results and discussion

Compounds A and B were prepared by formation of amines and amides derivates, using aminopropiltrietoxysilane (APSG) cloropropiletoxysilane functionalized nanosized SiO2 with the respective acyl chloride or amine dye derivate. The reaction of B plus 3 gave 6, while reactions of A plus 1 and A plus 2 gave 4 and 5, respectively (Fig 1). Analogs of 4,5 and 6 were prepared by the reaction of the acyl chloride dye derivate with butylamine. Giving 4a, 5a and 6a, respectivelly.

$$\begin{array}{c} \text{NH}_2\left(\mathbf{A}\right) \\ \text{Cl} \quad \left(\mathbf{B}\right) \\ \text{O}_2\text{Si} \\ \text{N}_3 \\ \text{Cl} \\ \text{Cl} \\ \text{Cl} \\ \text{N}_4 \\ \text{O} \\ \text{O}_2\text{Si} \\ \text{O}_2\text{Si} \\ \text{O}_2\text{Si} \\ \text{O}_3 \\ \text{O}_2\text{Si} \\ \text{O}_3 \\ \text{O}_3 \\ \text{O}_4 \\ \text{O}_7 \\ \text{$$

Figure 1: Compounds

Table 1 show that ${}^{1}O_{2}$ formation quantum yields (${}^{1}O_{2}$ FQY) for 4,5 and 6 are higher than the respective 4a, 5a and 6a analgs. The most sensitive dye is rose bengal wich 5a derivate is not able to produce ${}^{1}O_{2}$. The reduced ${}^{1}O_{2}$ FQY for the 4a-6a is probably due to an enhaced excited state destivation by the butyl group.

Table 1: ¹O₂ formation quantum yields

Compound	¹ O ₂ formation quantum
	yields (%)
Fenalenone	1,000
4	0,700
4a	0,530
5	0,017
5a	0,000
6	0,019
6a	0,014

Conclusion

Results shows that chemically anchoring the dyes to nanosized SiO₂ can be used in PDT purposes as ¹O₂ generators.

Acknowledgments

PIBIC-UFRJ

1 Ohulchanskyy, T. Y.; Toy, I.; Goswami, L. N.; Chen, Y.; Bergey, E. J.;Pandey, R. K.; Oseroff, A. R.; Prasad, P. N.; *Nano Lett*, **2007**, 7, No. 9,2835.

² Yoshihara.T.; Yamaji, M.; Itoh, T.; Nishimura, J.; Shizuka,H.; Tobita, Seiji. J. Photochem. Photobio. A: Chem. **2001**, 140,7.

³ Silveira, G. Q., Dissertação de Mestrado, UFF,, 2008.