

11th International Conference on Advanced Materials

Rio de Janeiro Brazil September 20 - 25

D-STEM: A Parallel Diffraction technique applied to Nanomaterials

K.J. Ganesh⁽¹⁾, M. Kawasaki⁽²⁾, J.P. Zhou⁽¹⁾, P.J. Ferreira^{(1)*}

- (1) Materials Science and Engineering, University of Texas at Austin, Austin, TX, 78712, USA, email: ferreira@mail.utexas.edu
- (2) JEOL, USA, Inc., 11 Dearborn Rd., Peabody, MA, 01960, USA * Corresponding author.

Abstract – A technique called D-STEM has been developed using a JEOL 2010F TEM/STEM instrument to obtain spot electron diffraction patterns in STEM configuration from nanostructures as small as ~3nm. An optimized ray path enables the formation of a 1-2 nm parallel probe scanned over the specimen to obtain a bright-field or dark-field STEM image. The beam is controlled, translated and subsequently positioned on the image at the feature of interest, while the diffraction pattern is recorded on a CCD camera.

In the D-STEM mode, the Free-Lens control feature in the instrument has been explored to optimize the ray path (Fig.1a), such that well-defined spot diffraction patterns can be obtained. In terms of electron optics, the major distinction between a conventional STEM configuration (C-STEM) (Fig.1b) and D-STEM is the use of a strongly excited condenser mini-lens (CM = 8.06 V) in the D-STEM mode; while in C-STEM, the CM is deactivated. In C-STEM mode, the parallel beam following C3 lens sets up a virtual source at an infinite distance for the objective pre-field lens, thereby resulting in a sharply converged probe at the specimen. On the other hand, in D-STEM mode, the optimized C3 and strongly excited CM create a demagnified point source of illumination at the front focal plane of the pre-field of the objective lens, resulting in a parallel beam on the specimen. The CM lens, operated at maximum excitation, together with a stronger demagnification of the electron source (C1 lens), produces a parallel beam with 1-2 nm spot size. The smallest condenser aperture of 10µm is employed to reduce the convergence angle and obtain sharper maxima at the back focal plane of the objective lens. Alignment in C-STEM is performed using a Ronchigram, while in D-STEM, the alignment procedure is essentially different. The low convergence angle of the beam (<1mrad) is unsuitable for observing the Ronchigram. Furthermore, the presence of an excited CM introduces distortions due to three-fold astigmatism, which are difficult to rectify using a Ronchigram [1]. Therefore, voltage-center alignment is carried out to position the electron beam along the optical axis of the objective lens. In summary, to set up a D-STEM mode capable of acquiring spot diffraction patterns from individual nanostructures, as small as ~3nm, the instrument requires a STEM bright-field or dark-field detector, FasTEMTM, Free-Lens control, a small condenser aperture, and a bottom mounted CCD camera. An integration of this technique with GatanTM software "STEM Diffraction Imaging" would automate the process and combine the rich information of electron diffraction with the spatially resolved power of spectrumimaging, thereby enabling a fast pixel-by-pixel acquisition of diffraction patterns as a 4D data-set.

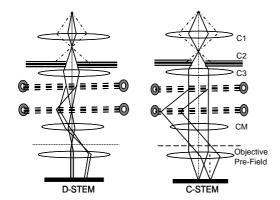


Fig 1. Schematic ray diagram showing (a) D-STEM (b) C-STEM

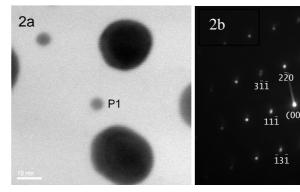


Fig 2 (a) Bright-field STEM image of Ag nanopartices; (b) Diffraction pattern of nanoparticle P1 (~4nm in size) along the [112] beam direction

References

[1] Voyles PM, Muller DA. Ultramicroscopy, 2002, 93, 147.