Sol-gel Synthesis and Bifunctional Properties of TiO₂/SnO₂ Composite Nanopowders

Huaming Yang^{*}, Aidong Tang, Jing Ouyang

Department of Inorganic Materials, School of Resources Processing and Bioengineering, Central South University, Changsha 410083, China

*Corresponding author: Tel: +86-731-8830549, Fax: +86-731-8710804, Email: hmyang9392@hotmail.com

Abstract Uniform TiO₂/SnO₂ composite nanopowders with different Ti/Sn molar ratio have been successfully prepared via the sol-gel route. The samples were characterized using X-ray diffraction (XRD), thermogravimetric and differential thermal analysis (TG-DTA), transmission electron microscopy (TEM) and infrared spectrum (IR). The crystal size of the as-synthesized TiO₂/SnO₂ nanopowders is about 80 nm according to the XRD calculation. XRD analysis shows that the diffraction peaks associated with SnO₂ can't be found in XRD patterns when the molar ratio of TiO₂/SnO₂ is less than 10/1. The photocatalytic degradation of methyl orange (MeO) in TiO₂/SnO₂ suspension was investigated. The results indicate that the TiO₂/SnO₂ is 10/1, but it will remarkably decrease with TiO₂/SnO₂ molar ratio of 1/1. The photocatalytic mechanism of TiO₂/SnO₂ nanopowders was discussed. In addition, the electric property of TiO₂/SnO₂ nanopowders with Ti/Sn molar ratio of 1/10 shows a resistivity of $1.4 \times 10^3 \Omega \cdot cm$. The TiO₂/SnO₂ nanopowders indicate a potential application in photocatalytic and electronic materials based on its bifunctional characteristics.

Keywords: TiO₂/SnO₂ nanocomposites; Sol-gel synthesis; Photocatalysis; Electrical property; Bifunctional characteristics.

[This work was supported by NSFC project (50774095), National Key Technology R & D Program (2008BAE60B06) and 863 Program (2007AA06Z121)]

References

- [1] S. Sato, R. Nakamura and S. Abe: Appl. Catal. A Vol. 284 (2005), p.131.
- [2] P. Thangadurai, A. C. Bose and S. Ramasamy. J. Phys. Chem. Solids Vol. 66 (2005), p. 1621.