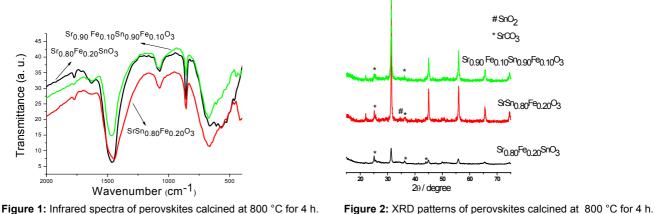


11th International Conference on Advanced Materials

Rio de Janeiro Brazil September 20 - 25

Influence of Fe³⁺ doping in the crystallization behavior of SrSnO₃ perovskite

F. T. G. Vieira^{(1)*}, S. C. Souza⁽¹⁾, E. Longo⁽²⁾, S. J. G. Lima⁽³⁾, T. A. Passos⁽³⁾, A. G. Souza⁽¹⁾ and I. M. G. Santos⁽¹⁾


- (1) LACOM/ DQ/ Universidade Federal da Paraíba, João Pessoa, PB, Brazil. E-mail: fagnerticiano@yahoo.com.br
- (2) CMDMC/Instituto de Química/ Universidade Estadual Paulista, Araraquara, SP, Brazil.
- (3) LSR/DTM/ Universidade Federal da Paraíba, João Pessoa, PB, Brazil.
- * Corresponding author.

Abstract – Alkaline earth stannates doped with Fe^{3+} were synthesized by the polymeric precursor method. Characterization was done by X-ray diffraction, infrared spectroscopy and UV-vis spectroscopy. Results confirmed the formation of the SrSnO₃ with orthorhombic perovskite structure, besides secondary phases as SnO₂ and SrCO₃. Synthesis temperature was lower than materials obtained by solid state reaction. When Fe^{3+} replaced Sn⁴⁺, a lower amount of strontium carbonate was formed. A higher crystallinity was observed for these samples.

Alkaline earth stannates have recently become important materials in ceramic technology due to their wide application in many catalytic reactions. Perovskite oxides (SrSnO₃: Fe) have been previously synthesized using the solid state reaction, with a temperature treatment above 1000 °C/ 24 h [1]. In the present investigation the systems Sr_{0.80}Fe_{0.20}SnO₃, SrSn_{0.8}Fe_{0.20}O₃ and Sr_{0.90}Fe_{0.10}Sn_{0.90}Fe_{0.10}O₃ were synthesized by the polymeric precursor method. Samples were characterized by X-ray diffraction, infrared and UV-vis spectroscopy.

Infrared spectra are presented in Fig. 1. According to Perry et al [2], four vibration modes are present in perovskite infrared spectra: v_1 is assigned to the stretch vibration of Me-O bond; v_2 is an optically inactive mode of the stannate group (SnO₃²⁻), which becomes active on account of distortions of the crystal lattice from ideal cubic structure; v_3 is assigned to a stretching and bending mode of O-Sn-O; v_4 is the only mode which depends on the modifier cation. In the present work, v_1 and v_3 modes were observed at 670 e 400 cm⁻¹, respectively. v_2 mode was observed at about 540 cm⁻¹, with higher intensity for Sr_{0.80}Fe_{0.20}SnO₃ sample, indicating that this samples had a higher short range disorder, probably due to Fe³⁺ covalent character, which distorted the perovskite structure. According to Nyquist and Kagel [3], carbonate bands are located at 1320-1530, 1040-1100 and 800-900 cm⁻¹, which were observed in all samples in the present work. The highest amount of carbonate was observed in Sr_{0.80}Fe_{0.20}SnO₃ sample.

XRD patterns (Fig. 2) showed the formation of perovskite phase in all samples. A low crystallinity was observed for $Sr_{0.80}Fe_{0.20}SnO_3$, in agreement to infrared spectra, that indicated a higher short range disorder for this sample. A higher crystallinity was observed in the other samples, with peaks of higher intensity and smaller width, besides less intense v_2 mode in the infrared spectra. SrCO₃ was observed in all samples, while SnO₂ was observed when Sn⁴⁺ was replaced in the perovskite lattice.

Acknowledgements: The authors acknowledge the financial support of CNPq/MCT and FINEP/MCT.

References

[1] P. S. Beurmann, V. Thangadurai and W. Weppner, J. Solid State Chem. 174 (2003) 392-402.

[2] C. H. Perry, D. J. McCarthy and G. Rupprecht, Phys. Rev. A 138 5A (1965) 1537- 1538.

^[3] R. Nyquist and R. Kagel, Infrared Spectra of Inorganic Compounds. London: AcademicPress; 1971.