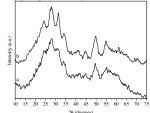
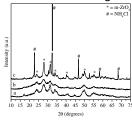


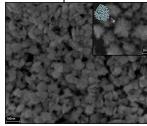
11<sup>th</sup> International Conference on Advanced Materials Rie de Janeiro Brazil September 20 - 25

## Reflux synthesis and hydrothermal processing of ZrO2 nanopowders at low temperature

J.M.E. Matos<sup>1\*</sup>, L.S. Cavalcante<sup>2</sup>, V. Santos<sup>2</sup>, S.H. Leal<sup>3</sup>, L.S. Santos Júnior<sup>1</sup>, M.R.M.C. Santos<sup>1</sup>, E. Longo<sup>2</sup>


- (1) Universidade Federal do Piauí, Campus Ministro Petrônio Portela, CCN-DQ, Teresina, PI, Brazil,
- (2) LIEC, Universidade Federal de São Carlos, São Carlos, SP, Brazil
- (3) Universidade Federal do Piauí, Campus Ministro Reis Veloso, Parnaiba, PI, Brazil \* Corresponding author: jmematos@gmail.com


Abstract - In this work, we report on the reflux synthesis at 90 °C and hydrothermal processing at 120 °C for obtention of zirconium oxide (ZrO<sub>2</sub>) nanopowders under several conditions. These nanopowders were characterized by X-ray diffraction (XRD), Fourier transform Raman (FT-Raman) spectroscopy, Adsorption-desorption N2-isotherms and field-emission scanning electron microscopy (FE-SEM). XRD patters and Raman spectra indicated that ZrO<sub>2</sub> nanopowders present a monoclinic structure. In addition, the hydrothermal processing promoted an increase in crystallinity of ZrO<sub>2</sub> nanopowders. The morphology of ZrO<sub>2</sub> nanopowders was observed by FEG-SEM. Also, the FEG-SEM micrographs revealed that the presence of H<sub>2</sub>O<sub>2</sub> in systems reduced the particle size, while the absence of promoted an increase in particle size.


Metallic oxides are a class of materials widely used as support in several applications [1]. among these oxides the zirconium oxide  $(ZrO_2)$  is very promissor to catalysis support.  $ZrO_2$  can present three crystalline structure: tetragonal (t-ZrO<sub>2</sub>), cubic (c-ZrO<sub>2</sub>) and monoclinic (m-ZrO<sub>2</sub>). Recently, ZrO<sub>2</sub> has received considerable attention as a catalyst for various reactions including hydrogenation of hydrocarbons, cracking, dehydrogenation and hydrodesulphurization. Therefore, in this paper, we report on the synthesis of  $ZrO_2$  by reflux method and hydrothermal processing at 120 °C in diferent conditions. The aqueous solution of the precursors systems were prepared with appropriates quantities of reagents in distilled water, using four different method to obtain crystalline ZrO2 nanopowders: Method A - Reflux at 90 °C for 96 h, ZrOCl2.8H2O (Aldrich 99.9%) + H<sub>2</sub>O<sub>2</sub> (Mallinckrodt, 10% in volume) in 50 mL of water. Method B - Hydrothermal processing at 120 °C for 72 h, ZrOCl<sub>2</sub>.8H<sub>2</sub>O in water. Method C - Hydrothermal processing at 120 °C for 72 h, ZrOCl<sub>2</sub>.8H2O + H<sub>2</sub>O<sub>2</sub> in water. Method D - Hydrothermal processing at 120 °C for 72 h, ZrOCl<sub>2</sub>.8H<sub>2</sub>O + H<sub>2</sub>O<sub>2</sub> + NH<sub>4</sub>OH (J. T. Baker, 30%) in water

In Fig. 1, it is possible to observe that with 72 h of reaction in hydrothermal system at 120 °C, the extent of the crystalline phase is formed in large quantities. Based on these results, the hydrothermal method was preferred to the reflux method for synthesizing nanozirconia (92 m<sup>2</sup>.g<sup>-1</sup>). It is possible to observe that the zirconia obtained in absence of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) presents a well defined monoclinic structure and a large crystallite size (Fig. 1). In Fig. 2, it is possible to observe the peaks are very wide, due to presence of nanocrystalline phase and small crystallite size (192 m<sup>2</sup>.g<sup>-1</sup>). Crystallite size was estimated to be less than 10 nm even for the sample obtained after 96 h. Crystallinity was improved significantly at this time and the ZrO<sub>2</sub> with monoclinic structure is well defined. The crystallinity was confirmed by Raman.

In Fig. 3, can be observed a large number of spherelike ZrO<sub>2</sub> nanoparticles. However, in Fig. 4 it was observed the presence of rods-like ZrO<sub>2</sub> nanoparticles. This behavior of isotropic growth for ZrO<sub>2</sub> nanoparticles, can be attributed the use of 10% H<sub>2</sub>O<sub>2</sub> as the agent oxidant, that acts in oxide surfaces and inhibit the anisotropic growth to self-assembled particles to formation of nanorods [2], can be observed in inset Fig. 4. The inset Fig. 3 its was verified that the sphere-like ZrO<sub>2</sub> nanoparticles present a spontaneous aggregation by interaction of Van der Walls during the coalescence process.







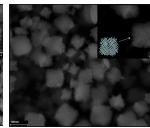



Figure 1: X-ray diffraction patterns of catalytic supports (ZrO<sub>2</sub>) obtained from ZrOCl<sub>2</sub>.8H<sub>2</sub>O in reflux. a) at 90 °C/2 days and b) 90 °C/5 days.

Figure 2: X-ray diffraction patterns of catalytic supports (ZrO<sub>2</sub>) obtained from ZrOCl<sub>2</sub>.8H<sub>2</sub>O in reflux. a) at 90 °C/2 days and b) 90 °C/5 days.

ZrO2 nanopowders: (a) Method A

Figure 3: FE-SEM micrograph for th Figure 4: FE-SEM micrograph for the ZrO<sub>2</sub> nanopowders: (a) Method A

## References

[1] C. Burda, X. Chen, R. Narayanan, M. A. El-Sayed, Chem. Rev. 105 (2005) 1025. [2] C.A. Bradley, M.J. McMurdo, T.D. Tilley, J. Phys. Chem. C. 111 (2007) 17570.