

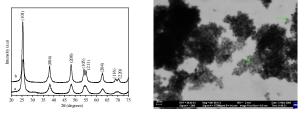
11th International Conference on Advanced Materials Riv de Janeiro Brazil Sentember 20 - 20

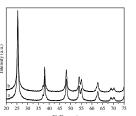
Experimental variables in the synthesis of anatase phase TiO₂ nanoparticles

J. S. Gonçalves¹, V. Santos², S. H Leal³, L. S. Santos Junior¹, M. R. M. C. Santos¹, E. Longo² and J. M. E.

Matos¹

- (1) Universidade Federal do Piauí, Campus Ministro Petrônio Portela, CCN-DQ, Teresina, PI, Brazil,
- (2) LIEC, Universidade Federal de São Carlos, São Carlos, SP, Brazil
- (3) Universidade Federal do Piauí, Campus Ministro Reis Veloso, Parnaiba, PI, Brazil
- * Corresponding author: jmematos@gmail.com


Abstract – Fine crystalline nanoparticles of pure anatase titanium dioxide (TiO₂) (average crystallite size ~ 5 – 156 nm) with a high surface area (~ 192 m²/g) were synthesized in the pure anatase phase, either with or without H₂O₂, using isopropanol (IP) or acetic acid (HAc) as a reaction medium. The synthesized powder was characterized by using XRD, BET surface area and STEM. The product that was obtained differed according to the reaction medium used.


Titanium dioxide (TiO_2) is a very useful semiconducting transition metal oxide material and exhibits unique characteristics such as low cost, easy handling and nontoxicity, and resistance to photochemical and chemical erosion [1]. The properties of TiO_2 are significantly dependent on the crystalline phase, i.e., anatase, rutile, or brookite. In this work, we report the preparation and characterization of nanocrystalline TiO_2 materials with different phases synthesized by using different solvents as reaction medium at 100 °C/48h.

Analytical-grade reagents were used as supplied without further purification. Titania nanoparticles (TiO_2) were synthesized using three methods: *Method A*: by mixing 2.5 mL of titanium isopropoxide (TIP, Ti[OCH(CH₃)₂]₄, > 99%, Acros Organics) in 50 mL of isopropanol (IP, 99.5%, Vetec) or Acetic Acid (HAc, 99.5%, Vetec). *Method B*: by mixing 2.5 mL of titanium isopropoxide and 8 mL of hydrogen peroxide (H₂O₂ 10% V/V, > 99%, Acros Organics), was dissolved in 50 mL of isopropanol. *Method C*: TiO₂ was obtained by mixing 2.5 mL of TIP and 8 mL of H₂O₂, which was dissolved in 50 mL of Acetic Acid. The solution was poured into an autoclavable bottle. The bottle was then placed in a regular laboratory oven at a constant 100 °C for 48 h. A gel was formed and it was hydrolyzed by adding 50 ml of milliq water. The solutions were poured into an autoclavable bottles. The bottles were then placed in a regular laboratory oven at a constant 100 °C/72h (method A), 48h (method B) and24h (method C).

Fig. 1(a and b) shows the patterns of X-ray diffraction of the synthesized TiO₂ samples beginning with titanium isopropoxide, then hydrogen peroxide, isopropanol and acetic acid. No peaks corresponding to the rutile or brookite phases were observed, which indicates that the TiO₂ powders obtained had a monophasic anatase structure (PDF #21-1272 anatase TiO₂). The crystal structure of the TiO₂ powders was not affected by changing the reaction medium. The narrow diffraction peaks suggest that the TiO₂ that was obtained was nano sized. TiO₂ obtained without H₂O₂ (Fig. 2) had the same profile as DRX (not shown). The TiO₂ that was obtained was identified as pure anatase TiO₂ and, no peaks corresponding to any other phase were observed, which indicates that the obtained TiO₂ powders also exhibited a monophasic anatase structure.

The morphology and average size of the synthesized pure nanocrystalline anatase TiO_2 as a function of the reaction medium were investigated in detail using electronic microscopy (FEG-STEM). Fig. 1 e 2 shows the STEM micrographs of the anatase TiO_2 samples synthesized with hydrogen peroxide in isopropanol (~ 7 nm and 192 m².g⁻¹) as reaction medium for a constant reaction time (48h) (Fig. 1) and without H_2O_2 (Fig. 2). The STEM images of all the samples show an irregular spherical shape (Fig 1) and rods shape (Fig. 2). The diameters of the rods in the sample obtained without H_2O_2 (148 m².g⁻¹) are much smaller, reaching a maximum of about 27 nm and 156 nm long, as shown in Fig. 2.

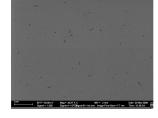


Figure 1: XRD patterns of TiO₂ obtained in the presence of H_2O_2 using isopropanol (a) or acetic acid (b) as reaction medium and SEM images of TiO₂ samples obtained in the presence of H_2O_2 using isopropanol as reaction medium.

Figure 2: XRD patterns of TiO_2 obtained in absence of H_2O_2 using isopropanol (a) or acetic acid (b) as reaction medium and SEM images of TiO_2 samples obtained in absence of H_2O_2 using isopropanol as reaction medium.

References

[1] M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95, 69(1995).[2] V.F. Stone Jr., R.J. Davis, Chem. Mater. 10, 1468 (1998).