An investigation of magnetism in ZrO$_2$ with low doping of transition metals

Gil Rebaza, A. V.1, Solano, J.G.2 and Taft. C. A.3

(1) Instituto de Física de la Plata - CONICET – Argentina
(2) Laboratorio de Simulação de Moléculas e Superfícies, Centro Brasileiro de Pesquisas Físicas CBPF, Rua Dr. Xavier Sigaud, 150 Urca, 22290-180, Rio de Janeiro, Brazil

Dilute magnetic semiconductors materials have a significant importance because of their potential technological and industrial applications such as magnetic-optic and spintronic devices. In this work we investigate the magnetic properties of ZrO$_2$ in the monoclinic phase with a low doping concentration of transition metals as V, Cr, Mn, Fe, Co. The calculations were performed using Vienna ab-initio Simulation Package which employs Density Functional Theory and expand the electronic structure using plane wave basis set. Electron-ion interaction is described using the projector-augmented wave method (PAW) with plane waves up to energy cutoff at 500 eV and a Gaussian smearing with a smearing parameter of 0.2 eV. We have also adopted the GGA Perdew and Wang 91(GGA) and PBE exchange-correlation functional with Vosko Wilk and Nusair interpolation corrections. The integration was performed over 9x9x9 K-mesh in a Monkhorst-Pack scheme. The calculation was carried out using a 2x2x2 supercell containing 96 atoms. Our results (Fig. 1) indicates that the doping with transition metals can modify significantly the magnetic properties of ZrO$_2$.

![Graph showing magnetic moment per transition metal ion](image)

Fig. 1 Magnetic moment per transition metal ion obtained from a Zr$_{1-x}$TM$_x$O$_2$ supercell with a low concentration of x
