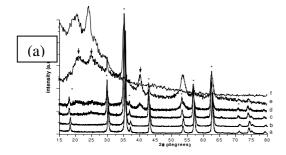
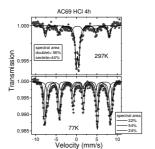


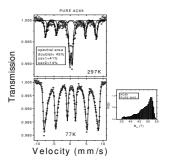
11th International Conference on Advanced Materials

Rio de Janeiro Brazil September 20 - 25


Synthesis and Characterization of the Magnetic Properties of Fe₃O₄/PANI Magnetic Nanocomposite

A. F. R. Rodriguez $^{(1)^*}$, A.C.V. Araujo $^{(2)}$, J.L. López $^{(5)}$, R. B. Azevedo $^{(3)}$, W.M. de Azevedo $^{(2)}$, S. Alves Jr. $^{(2)}$. and P.C. Morais $^{(4)}$


- (1) Centro de Ciências Biológicas e da Natureza, Núcleo de Física, Universidade Federal do Acre, Rio Branco, Acre AC 69915-900, Brazil, e-mail: ruiz@ufac.br
- (2) Laboratório de Química do Estado Sólido, Departamento de Química Fundamental, Universidade Federal de Pernambuco, 50970-901, Recife, PE, Brazil.
- (3) Instituto de Biologia, Universidade de Brasília, Brasília DF 709-900, Brazil,
- (4) Núcleo de Física Aplicada, Universidade de Brasília, Brasília DF 70910-900, Brazil,
- (5) Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte MG 30123-970, Brazil
- * Corresponding author.


Abstract – In this work we report the preparation and characterization of a polyaniline/magnetite (PANI)-Fe₃O₄ nanocomposite, with both magnetic a and conducting properties. This report is the ⁵⁷Fe Mössbauer spectroscopic characterization of the Fe₃O₄ nanoparticles and of the PANI-Fe₃O₄ HCI magnetic nanocomposite.

The nanocomposite was synthesized by a new an in situ straightforward synthetic route polymerization method, where the aniline monomer was polymerized using the Fe_3O_4 nanoparticles assisted by UV light as a oxidizing agent only. The products were characterized by powder X-ray di_ractometry (XRD), Fourier transform infrared (FTIR), scanning and transmission electron microscopy (TEM and SEM), and Mossbauer spectroscopy. The X-ray difraction analyses of the Fe_3O_4 and PANI/ Fe_3O_4 composites, obtained after UV irradiation for 1, 2, 3 or 4 hours, shown the presence of the Fd3m cubic spinel phase for the Fe_3O_4 , where the particle size calculated by the Debye-Scherrer equation gives a Tc of 23, 25, and 23 nm for sulfate, chloride and nitrate acid reaction medium respectively, in Figure 1. The Mossbauer spectra analysis of the polyaniline/magnetite (PANI)- Fe_3O_4 nanocomposite after 4 hour of reaction shows a superparamagnetic quadrupole doublet at room temperature. The analysis clearly shows the powerful possibilities of Mossbauer spectroscopy to analyze the surface oxidation of nano structured powders of magnetite, in Figure 2.

Figure 1: X-ray diffraction patterns for (a) Fe_3O_4 , and for PANI/ Fe_3O_4 nanocomposites as a function of the UV irradiation. (b) after 1 hour, (c) after 2 hours, (d) after 3 hours,

Figure 2: Mössbauer spectra of the sample Fe_3O_4 and 4C69 HCl 4h obtained at 77 K and room temperature. The circles represent the experimental data while the solid line represents the fit obtained with the several components represented by dashed lines

[1] Park J. W., Huh S. H., Jeong J. W., Lee G. H., Ri H-C., J. Korean Phys. Soc. 39 (2001) 387

Acknowledgements

The authors acknowledge the financial support of the Brazilian agencies, ELECTRONORTE, FINATEC, CTPETRO/FINEP, and MCT/CNPq-SEPLAN, RENAMI.