

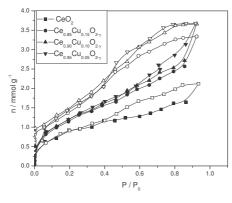
11th International Conference on Advanced Materials

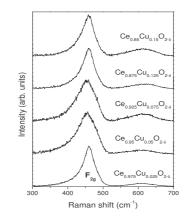
Rio de Janeiro Brazil September 20 - 25

Synthesis and characterization of Cu- doped ceria nanopowders

B. Z. Matovic⁽¹⁾*, S. B. Boskovic⁽¹⁾, M. Rosic⁽¹⁾, B. D. Babic⁽¹⁾, Z. D. Dohcevic-Mitrovic⁽²⁾, M. B. Radovic⁽²⁾, Z. V. Popovic⁽²⁾

- (1) Institute of Nuclear Sciences, Vinca, 11001, Belgrade, Serbia, POB 522, mato@vinca.rs
- (2) Center for Solid State Physics and new Materials, Institute of Physics, 11080 Belgrade, Serbia
- * Corresponding author


Abstract – Nanopowdered Ce_{1-x}Cu_xO_{2- δ} samples (0 ≤ x ≤ 0.15) were synthesized by a self-propagating room temperature synthesis. Samples were characterized by XRD, Raman spectroscopy and nitrogen adsorption-desorption measurements. Ce_{1-x}Cu_xO_{2- δ} particles exhibit a fluorite-type structure with and average particle size of 4 nm. Raman spectroscopy shows that these compounds in low doping regime (up to 7.5 % of Cu), form a solid solution that maintain fluorite structure of CeO₂. With further increase of Cu concentration additional mode appears at ~ 620 cm⁻¹ which is ascribed to CuO structure. Nitrogen adsorption-desorption measurements reveal that doping increases the specific surface area of nanoparticles.


 $Ce_{1-x}Cu_xO_{2-\delta}$ nanopowders ($0 \le x \le 0.15$), were synthesized by a self-propagating room temperature synthesis (SPRT) using metal nitrates and sodium hydroxide as the starting materials. The synthesis involves hand-mixing of precursors and exposure to air for three hours after which mixture is suspended in water. Rinsing out of reaction byproduct (NaNO₃) was performed by centrifuge. This procedure was repeated three times with distilled water and twice with ethanol [1].

Characterization of structural properties, phase stability and particle size was performed with X-ray diffraction (XRD) spectroscopy at room temperature. $Ce_{1-x}Cu_xO_{2-\delta}$ particles exhibit a fluorite-type crystal structure characteristic for CeO₂. Average particle size of about 4 nm was determined from Ritveld analysis of XRD data.

First order Raman active F_{2g} mode, in $Ce_{1-x}Cu_xO_{2-\delta}$ samples, shifts to lower frequencies with increase of dopant concentration up to 7.5% Cu. Further increase of Cu content leads to increase in F_{2g} mode frequency and additional mode appears at ~ 620 cm⁻¹ which is ascribed to B_g Raman mode characteristic for nanocrystalline CuO structure [2]. From Raman scattering results we have concluded that these compounds are solid state solutions in low doping regime (until 7.5% Cu). Additional mode ascribed to intrinsic oxygen vacancies in ceria lattice is located at 600 cm⁻¹. Intensity of this mode increases with doping content as a consequence of increased oxygen vacancy concentration.

Nanopowders were characterized by nitrogen adsorption-desorption measurements and it was revealed that the radius of pores varies between 2 and 6 nm which means that all samples are mostly mesoporous according to IUPAC classification. Presence of Cu increases the specific surface ($\approx 100 \text{ m}^2\text{g}^{-1}$) compared to pure ceria (70 m²g⁻¹).

Figure 1: Nitrogen adsorption isotherms for CeO_2 sample and samples of CeO_2 with different amount of Cu. Solid symbols - adsorption, open symbols – desorption.

References

Figure 2: Room temperature Raman spectra of $Ce_{1\cdot x}Cu_xO_{2\cdot\delta}$ samples (0 $\leq x \leq 0.15)$

[1] S. Boskovic, D. Djurovic, Z. Dohcevic-Mitrovic, Z. Popovic, M. Zinkevich, F. Aldinger, J. Power Sources, 145, (2005) 237-242. [2] J. F. Xu, W. Ji, Z. X. Shen, W. S. Li, S. H. Tang, X. R. Ye, D. Z. Jia and X. Q. Xin, J. Raman Spectrosc. 30, (1999) 413–415.