

11th International Conference on Advanced Materials

Rio de Janeiro Brazil September 20 - 25

Intercalation of polyelectrolytes into lamellar vanadium pentoxide

F. Jr. Quites⁽¹⁾ and H. O. Pastore^{(1)*}

⁽¹⁾Instituto de Química, Universidade Estadual de Campinas, CP 6154, CEP 13083-970, Campinas, SP, Brazil, e-mail:gpmmm@iqm.unicamp.br

* Corresponding author.

Abstract – Layered vanadium oxide hybrids were prepared directly from commercial bulk V_2O_5 and poly(diallydimethylammonium chloride) (PDDA) or alternatively, poly(alillamine chloride) (PAH). The materials thus produced, [PDDACl]_{0.14}[PDDA]_{0.28} V_2O_5 and [PAHCl]_{0.34}[PAH]_{0.41} V_2O_5 , can be used as anion exchangers. On the basis of X-ray diffraction (DRX), elemental analysis (CHN), thermal analysis (TG/DTG) and spectroscopic results (FTIR and UV-Vis-NIR) the presence of the polycations in the interlayer space of V_2O_5 was confirmed. It emerged from this study that the intercalation of polyeletrolytes on V_2O_5 occurs only if some V^{5+} ions are reduced in V^{4+} .

Vanadium pentoxide (V₂O₅) has attracted special interest because of its lamellar structures. The layered structure is made of parallel ribbons of VO₅ pyramids and thus the interlayer space can be used to adequately host species to produce intercalation compounds [1]. Here, the intercalation of poly(diallydimethylammonium chloride) (PDDA) and poly(alillamine chloride) (PAH) into the V₂O₅ matrix using only hydrothermal process is investigated. The objective is to simultaneously create layer charges in the V₂O₅ matrix and use the polyelectrolytes as locus to ultimately produce a novel material with anionic exchange sites. The synthesis of the hybrid materials was based on a very simple procedure: V₂O₅ was added to an aqueous solution of PDDA and PAH polyeletrolyes respectively, and stirred until a homogeneous suspension of the solid was obtained. The mixture was heated under hydrothermal conditions in a Teflon-lined stainless autoclave for 96 h at 150° C. The obtained green powders were filtered, washed with plenty of distilled water and ethanol and air dried at room temperature.

The insertion of PDDA and PAH into the interlayer space of the host oxide causes important changes in the structure of the material. Figure 1 shows XRD for the V₂O₅ matrix (Figure 1a) and for the intercalated compounds obtained with PDDA, [PDDACI]_{0.14}[PDDA]_{0.28}V₂O₅, and with PAH, [PAHCI]_{0.34}[PAH]_{0.41}V₂O₅ Figure 1b and 1c. The first difference to call attention on the XRD profiles is that the polyelectrolytes intercalated causes the enlargement of the interlayer space, the original interlayer space of V_2O_5 (0.57 nm) increases to 1.40 nm after reaction with PDDA and to 1.80 nm upon intercalation with PAH. Those two materials $[PDDACI]_{0.14}[PDDA]_{0.28}V_2O_5$ and $[PAHCI]_{0.34}[PAH]_{0.41}V_2O_5$ still have exchangeable chloride ions, 33.3 and 45.0 % of total initial Cl⁻ respectively, as determined by the Mohr's method. The results of TG/DTG (not shown) presented weigh loss in the range of 250-550°C that are related with the decomposition of polycations inserted into V₂O₅. The FTIR spectra (not presented) showed bands corresponding to PDDA and PAH as well as band in lower frequency range assigned to V₂O₅ vibration modes. The UV-Vis-Nir spectra (Figure 2) presented bands associated with $O \rightarrow V^{5+}$ charge transfer at 402 nm. After intercalation of polyelectrolytes (Figures 2b and c), new bands appear in near-infrared region, around 950 and 1400 nm, ascribed to an intervalence-transfer transition ($V^{4+} \rightarrow V^{5+}$) [2]. Therefore, V^{+5} ions are reduced to V^{+4} upon intervalence for a superservice of intercalation of polycations [2]. In summary, we have developed a novel and facile route for intercalation of polyelectrolytes into lamellar V_2O_5 in one single step. In comparison with the methods from the literature [3], the direct reaction and the hydrothermal treatment were straightforward procedures to create positive charges into the interlamellar space of V_2O_5 .

Figure 1: XRD of the V_2O_5 pristine (a), [PDDAC]_{0.14}[PDDA]_{0.28}V_2O_5 hybrid material (b) and [PAHC]_{0.34}[PAH]_{0.41}V_2O_5 hybrid material (c).

Figure 2: UV-Vis-Nir spectrum of V_2O_5 pristine (a), hybrid [PDDACI]_{0.14[}PDDA]_{0.28}V_2O_5 (b) and [PAHCI]_{0.34}[PAH]_{0.41}V_2O_5 (c).

[1] Y. Wang and G. Cao Chem. Mater. 18 (2006) 2787-2804.

[2] F. J. Anaissi, G. J. F. Demets and H. E. Toma Electrochem. Commun. 1 (1999) 332-335.

[3] Y. Shan, R. H. Huang and S. D. Huang Angew. Chem. Int. Ed. 38 (1999) 1751-1753.