

Catalytic activity of CaO and ZnO nanoparticles in biodiesel production

J. A. Peres¹, G. P. Mambrini², G. S. Nascimento¹, C. Ribeiro² and L. A. Colnago²

¹*Universidade Federal de São Carlos, Departamento de Química, São Carlos, SP, Brazil.*

²*EMBRAPA, CNPDIA, São Carlos, SP, Brazil.*

The idea of using vegetable oils as fuel comes from the end of nineteenth century, with Rudolph Diesel. Fuels of vegetable origin have some advantages in comparison with petroleum based fuels, as to be renewable, less toxic, biodegradable, and have lower sulfur contend. In Brazil, ethanol appears as a great substitute for gasoline in combustion based engines. However, for compression based engines, there is not yet a substitute for diesel oil made from vegetable resources produced in the same scale of ethanol. Currently, much research is achieved in order to turn possible the production of biodiesel in commercial scales. Due to its high viscosity, vegetable oils cannot be used directly on diesel engines. The most common way used currently in order to obtain biodiesel is through the transesterification of those oils. Transesterification is the reaction of triglycerides (oil) with an alcohol (normally methanol and ethanol) generating glycerol and methyl or ethyl esters, also known as biodiesel. In this reaction process, it is essential the use of a catalyst, generally a base. The biggest trouble of using bases in this process is the soap formation, in cases which water is present as a contaminant. Soap generation is followed by an emulsion formation, leading to difficulties in separate the pure biodiesel.

Some metallic oxides have basic character surfaces. These oxides, as example calcium oxide, can be used as catalyst in transesterification with some advantages, like no soap generation, easier of removing from reaction media and reusability.

The aim of this work was to synthesize and characterize CaO and ZnO nanoparticles and test them as catalyst for transesterification reaction. Those oxides were prepared by the complex polymerization method. This method consists in dissolving a polycarboxilic acid in water (citric acid) followed by dissolution of the metal precursors (calcium carbonate and zinc acetat). After complete dissolution, a polyalcohol (ethylene glycol) was added, and a polymeric resin is obtained. This resin was heat treated at 350°C for 30min, generating a puff. It was ground in a mortar, and heat treated at 700°C for 2h in order to obtain the desired material. Those materials were characterized by means of X-ray diffraction.

Catalytic tests were made by adding certain amounts of corn oil and alcohol (methanol or ethanol) in a closed vessel, together with the oxide. The reaction temperature and time interval were 90°C and 2h, respectively. It was observed that calcium oxide have the biggest catalytic activity, much bigger than zinc oxide. Complete reaction was observed in the case of methanol, and 65% yield for ethanol. It is related with the stronger basic character of this oxide in comparison with the other samples studied in this work.

Keywords: biodiesel, zinc oxide, calcium oxide, catalytic activity, polymerization method.

Work supported by CNPQ, FAPESP and EMBRAPA

[1] R. S. Watkins, A. F. Lee and K. Wilson, *Green Chem.*, 2004, **6**, 335-40.

juliano_aurelio_peres@yahoo.com.br, Rod. Washington Luiz Km235, Bairro Monjolinho, CEP:13565-905, São Carlos – SP, Brazil