Synthesis of manganese-zinc ferrite by powder mixing using ferric oxide from a steel mill acid recovery unit

S.S. Marins¹, <u>T. Ogasawara</u>², L.M. Tavares²

**Petrobrás, Rio de Janeiro, RJ (Brazil)

With the aim of producing fine-grained manganese-zinc ferrite at the end of a calcination process at moderate temperatures, this work consisted, at first, of an 'electrochemically designed' powder mixing by wet ball-milling a mixture of raw materials of manganese (MnO₂ or MnCO₃), zinc (ZnO or Zn^o) and iron (Fe₂O₃ granules produced by an acid recovery unit of a Brazilian steelmaker, milled to fine sizes using alkaline media). This mixing/milling resulted in solely submicron-sized particles for the mixture of MnO₂ + Zn^o + Fe₂O₃ in alkaline medium. These mixtures were submitted to calcination in air at two different temperatures: 900 and 1200°C. When the alkaline milled mixture of MnO₂ + Zn^o + Fe₂O₃ was calcined in air at 1200°C, the result was the formation of a manganese-zinc ferrite whose magnetic properties depended on the nature and concentration of the alkaline agent. When the alkaline milled mixture of MnO₂ + ZnO + Fe₂O₃ was submitted to calcination in air at 1200°C, the result was a well crystallized manganese-zinc spinel ferrite. The attempt to synthesize a manganese-zinc spinel ferrite by calcination in air at 1200°C from the powder mixture of MnCO₃ + ZnO + pre-milled Fe₂O₃ in aqueous solutions of NH₄OH was not successful and resulted in a multiphase material, with low saturation magnetization and initial permeability. Table 1 summarizes the main data on test-conditions and their results. The thermodynamics governing the behavior of the Mn-Zn-Fe-0 system during calcination has already been subject of a previous publication [1]].

<u>Keywords</u>: manganese zinc ferrites; ultrafine milling; synthesis; magnetic properties.

Table 1. Particle size distribution and BET surface area of the milled-mixed powder mixtures and magnetic properties after calcinations at 1200°C.

	Test-mixture	D_{90}	Surface	M_s		H_s	H_c	M_r	μ_i
Nr	Composition*	(µm)	Area			(kOe)	(kOe)	(emu/g)	(emu/g)
•			(m^2/g)	emu/g	G	•			x100**
1	MnO ₂ +ZnO	8.45	9.7	32.7	4109	4.45	0.29	19.8	1.034
2	MnO_2+ZnO , $AD1$	6.63	6.7	38.9	4888	5.63	0.30	25.7	8.833
3	MnO_2+ZnO , $AD2$	6.60	7.8	37.0	4849	4.30	0.25	20.8	5.393
4	MnO_2+ZnO , AD3	5.16	10.6	35.0	4398	5.75	0.28	21.5	5.943
5	MnCO ₃ +ZnO, AD1	5.14	7.2	35.7	4486	6.36	0.32	23.2	3.718
6	MnO ₂ +Zn°, AD2	3.74	10.1	34.6	4348	5.18	0.33	21.7	4.237
7	MnO ₂ +Zn°, AD3	3.80	14.4	40.1	5039	1.26	0.24	25.6	6.983

^{*} All compositions contain additionally Fe_2O_3 ; AD1 = 1M NaOH; AD2 = 0.5M NaOH; AD3 = 100% NH₄OH. ** For H = 1Oe.

Work supported by CNPq, CAPES and FAPERJ.

[1] T. Ogasawara, L.M.Tavares, S.S. Marins, Mater. Lett.**61**, 5063-5066 (2007). ogasawat@metalmat.ufrj.br, Rua Ângelo Neves, 131 apto.104 – Ilha do Governador CEP 21920-270 Rio de Janeiro-RJ, Brazil.

²Department of Metallurgical and Materials Engineering, Universidade Federal do Rio de Janeiro – COPPE/UFRJ, Cx. Postal 68505, CEP 21941-972, Rio de Janeiro, RJ (Brazil)