Thermoluminescence of olivine from Brazil.

<u>PEDRO OCTAVIO LARDARO</u>¹, Alexia Oliveira Silva¹, Matheus Cavalcanti dos Santos Nunes², Elisabeth Mateus Yoshimura³, Carina Ulsen⁴, Neilo Marcos Trindade^{4,5}, Roseli Kunzel⁶

¹Federal Institute of São Paulo (*Física*) , ²Universidade Estadual Paulista (*Instituto de Ciência e Tecnologia*) , ³Univeristy of São Paulo (*Física*) , ⁴Univeristy of São Paulo, ⁵Federal Institute of São Paulo (*Física*) , ⁶Universidade Federal de São Paulo (*Departamento de Física*)

e-mail: pedrolardaro@gmail.com

Olivine is a magnesium iron silicate with the chemical formula $((Mg^{2+}, Fe^{2+})_2SiO_4)$. Olivine account for approximately 1.5% Earth's crust volume[1]. Dosimetry is the measurement and the calculation of the ionizing radiation absorbed dose by a material. One of the most used techniques in dosimetry is thermoluminescence (TL), on which this work is based[2]. TL is a phenomenon that occurs in semiconductors or insulators that had been previously exposed to ionizing radiation, which emit light when stimulated by a thermal energy[2]. This research investigates TL response of olivine under different radiation sources, beta and Xray, in order to develop a detector that is innovative and commercially accessible. The samples were powdered with granulometry $<75\mu m$. The samples were irradiated with a beta source ⁹⁰Sr/⁹⁰Y (with total dose range between 5 to 10 Gy); or by an X-ray source (Moxtek 50kV Cabled). TL measurements were performed with a Risø reader (model DA-20) or in a homemade system, LUMI22, developed by the Lumidosi group at Federal Institute of São Paulo. In addition, the composition of olivine was analyzed by scanning electron microscopy (SEM)/ energy-dispersive X-ray spectroscopy (EDS) and X-ray Fluorescence (XRF). The preliminary results shown 5 TL glow peaks, the last one, the most intense centered ~ $300^{\circ}C$ (1 $^{\circ}C/s$). To verify its dosimetric properties, measurements as repeatability, reproducibility, and fading were taken.

Acknowledgements:

P. O. Lardaro thanks to FAPESP (#2022/01594-0). A. O. Silva thanks to FAPESP (#2020/15626-6). M.C.S. Nunes thanks to Capes. E. M. Yoshimura is grateful to FAPESP (#2018/05982-0). N. M. Trindade is grateful to FAPESP (#2018/05982-0; #2019/05915-3) and IFSP/IFSULDEMINAS.

[1] K. W.Wedepohl and C. W. Correns, Handbook of geochemistry (1971)

[2] S. W. S.McKeever, In Cambridge Solid State Science Seriess(1985)