Thermoluminescence of brazilian amazonite

<u>ROBERTO TURIBIO EBINA KAWANAKA MARTINS</u>¹, Matheus Cavalcanti dos Santos Nunes², Elisabeth Mateus Yoshimura³, Carina Ulsen⁴, Melina Mara de Souza⁵, Neilo Marcos Trindade^{6,7}

¹Federal Institute of São Paulo (*Physics Department*), ²São Paulo State University,
³University of São Paulo (*Institute of Nuclear Physics*), ⁴University of São Paulo (*Department of Mining and Petroleum Engineering*), ⁵Federal Institute of Southern Minas Gerais (*Geography Department*), ⁶University of São Paulo (*Institute of Physics*), ⁷Federal Institute of São Paulo (*São Paulo (Física*))

e-mail: r.turibio@aluno.ifsp.edu.br

Feldspars are used for dosimetry purposes, such as, dating, retrospecting dosimetry and detection of irradiated food. Amazonite (KSi₃AlO₈) is a variety of microline, which is constituted by a rigid 3D-framework (Si_3AlO_8) with cavities formed by 8 oxygens, ions K⁺are localized within and practically free in these cavities, only subject to the electric crystal field [1]. According to the literature, the coloration in amazonite is due to the electronic transitions of Pb^+ and Pb^{3+} in K^+ sites [2]. These transitions and impurities can act as a trapping center and can participate in the luminescence process. Therefore, this work aims to analyze the mineral chemical composition and characterize the thermoluminescent (TL) properties, a phenomenon where occurs the emission of light from an insulator or semiconductor when it is heated upon exposure to ionizing radiation. Scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS)- X-ray fluorescence (XRF) and X-Ray diffraction (XRD) were carried out for mineral characterization. The TL measurements were performed in a commercial reader Risø (model DA-20); sample was irradiated by a ⁹⁰Sr/⁹⁰Y beta source (10mGy/s). Preliminary results showed up that amazonite present a peak centered at around 420K (5K/s). TL investigations, such as dose-response, repeatability, reproducibility and parameters kinetic were also carried out.

Acknowledgements:

R.T.E.K. Martins thanks to PIBIC (#2021/SPO.0103). M.C.S, Nunes thanks to CAPES. E. M. Yoshimura is grateful to CNPq and FAPESP (#18/05982). N. M. Trindade is grateful to FAPESP (2019/05915-3) and IFSP/IFSULDEMINAS.

References:

[1] A. Julg, Physics and Chemicals of Minerals vol. 25, 1-5 p. (1998);

[2] V. Correcher and J. Garcia-Guinea, Radiation Measurements vol. 46, 1-4 p. (2011).