Thermoluminescence properties of alexandrite under beta, ultraviolet and X-ray irradiation.

<u>Alexia Oliveira Silva</u>¹, Matheus Cavalcanti dos Santos Nunes², Elisabeth Mateus Yoshimura³, Carina Ulsen³, Melina Mara de Souza⁴, Neilo Marcos Trindade^{3,1}

¹Federal Institute of São Paulo, ²São Paulo State University, ³University of São Paulo, ⁴Federal Institute of Southern Minas Gerais

e-mail: alexia.o@aluno.ifsp.edu.br

Recent studies have proposed the investigation of alexandrite mineral (BeAl $_2O_4$:Cr $^{3+}$) as a potential natural dosimeter due its composition combines BeO and Al₂O₃, oxides used as commercial dosimeters [1]. Dosimetric materials are essential for the evaluation of personal and environmental irradiation doses in medical, spatial, and industrial activities [2]. Thermoluminescent dosimeters, when stimulated by a thermal energy, emit light with intensity proportional to the radiation dose absorbed by the material. Thermoluminescence (TL) analysis of alexandrite samples after beta, X-ray and ultraviolet irradiation are discussed in this study. For each measure, samples from the same batch, were previously irradiated with a beta source ⁹⁰Sr/⁹⁰Y; or illuminated by ultraviolet lighting system Boitton lamp, model BOIT-LUB01, in UVC range with 6W of power; or X-ray source (Moxtek 50kV Cabled). TL measurements were performed with a Risø reader (model DA-20) and in a homemade system, LUMI22, developed by the Lumidosi group at Federal Institute of São Paulo. In addition, alexandrite was analyzed by X-ray Fluorescence (XRF) and X-ray Diffraction (XRD). Preliminary TL measurements were carried out using beta and UVC sources. Alexandrite shows five TL glow peaks, I (~355K), II (~405K), III (~445K), IV (~525K) and V (~585K). It is expected to develop an innovative and commercially accessible detector.

Acknowledgements:

A. O. Silva thanks to FAPESP (#2020/15626-6). M. C. S. Nunes thanks to CAPES. E. M. Yoshimura is grateful to FAPESP (#2018/05982-0). N. M. Trindade thanks FAPESP (#2018/05982-0; #2019/05915-3), CNPq (#409338/2021-4) and IFSP/IFSULDEMINAS.

References:

[1] S.L. Dardengo, M.C.S. Nunes, C. Ulsen et al., *Brazilian Journal of Radiation Sciences* vol. 8, 1-18 (2020).

[2] W. Rühm, E. Ainsbury, B. Breustedt et al., *Radiation Physics and Chemistry vol.*168 (2020).