

Characterization of LiFePO₄ olivine synthesized by the hydrothermal route

Francisco Maciel de Brito Neto^{1,2}, Marcus Valério Botelho do Nascimento³, Diogo Padilha Oliveira², Lianet Aguilera Domínguez⁴, João Carlos Martins da Costa², Jose Victor Garcia Milério², Mitsuo Lopes Takeno^{5,2}, Lizandro Manzato⁵, Francisco Xavier Nobre⁵

¹Universidade de São Paulo, ²Instituto de Desenvolvimento Tecnológico, ³Instituto de Desenvolvimento Tecnológico (PD&I) , ⁴Instituto de Desenvolvimento Tecnológico (PowerCell) , ⁵Instituto Federal de Educação, Ciência e Tecnologia do Amazonas

e-mail: francisco.maciel.bn@gmail.com

olyanion materials, in special olivine-type LiMPO₄(M = Fe, Mn, Co, Ni), have gained considerable interest as cathode materials for high-power lithium-ion batteries due to their various merits including: cost-effectiveness, less toxicity, abundant availability, stability of the structure , the redox potential and high specific capacity [1,2]. In this study olivine-type LiFePO₄ powders were synthesized. LiFePO₄precursors were prepared using the following: LiOH·H₂O, FeSO₄·H₂O, H₃PO₄(85 wt.%) and ascorbic acid where the molar ratio used was 3:1:1:0.2. First, two beakers were prepared: (i) LiOH·H₂O, H₃PO₄(85 wt. %) and 40mL of deionized water and (ii) FeSO₄·H₂O, ascorbic acid and 40mL of deionized water, each beaker was shaken separately for 30 minutes and after that the contents of beaker (ii) are slowly added to (i). This mixture of precursor materials was transferred to Teflon autoclave inside a stainless steel container kept in the oven at a temperature of 160°C at different times (3h, 6h, 9h, 15h). The precipitates were analyzed by XRD and the LiFePO₄phase was identified, ICSD card nº 15448, belongs to the olivine family of lithium ortho-phosphates with an orthorhombic lattice structure in the space group Pnma. The structure consists of corner-shared FeO₆octahedra and edge-shared LiO₆octahedra running parallel to the b-axis, which are linked together by the PO₄ tetrahedra. It is expected that the powders obtained have a performance adequate to their already mentioned characteristics.

References:

- [1] Moumita Kotal, Sonu Jakhar, Sandipan Roy, Harish K. Sharma. Journal of Energy Storage, v.47, p.103534, 2022. <https://doi.org/10.1016/j.est.2021.103534>.
- [2] Ying Huang, Zheng Zhang, Heng Gao, Jiaxin Huang, Chao Li. Solid State Ionics, v.356, p.115437, 2020. <https://doi.org/10.1016/j.ssi.2020.115437>.