Structure of Gallium-Phospho-Oxyfluoride Glasses by NMR Spectroscopy

Anuraag Gaddam¹, Gustavo Galleani², Hellmut Eckert³

¹Universidade de São Paulo (*Instituto Física de São Carlos*) , ²Universidade de São Paulo, ³Instituto de Fisica de Sao Carlos

e-mail: anuraagg@usp.br

Phospho-oxyfluoride glasses are interesting as optical materials as they combine various key properties such as low refractive index, radiation resistance, wide transmission range and favorable emission characteristics for rare-earth dopants with good glass forming ability, ensuring the material to be drawable into fibers. As the development of optimized glass compositions by traditional trial-and-error methods is laborious, time consuming, and expensive, it is important to develop glass compositions based on a fundamental understanding of the glass structure and establish structure-property relation models. To this end we have used NMR spectroscopy to study the structure of gallium-based phosphooxyfluoride glasses with composition $xGa(PO_3)_3-(40-x)GaF_3-20BaF_2-20ZnF_2-20SrF_2$ for x=5, 10, 15, 20 25 mol%, i.e., as a function of GaF₃/Ga(PO₃)₃ratio. Since the glasses are prone to F volatilization, first a ¹⁹F NMR technique was designed for quantifying these losses and measuring the exact F contents of these glasses. ⁷¹Ga NMR results show that Ga is mainly six-coordinated with a mixed fluoride/phosphate coordination. Quantitative estimates of this ligand distribution around gallium were obtained by combined ⁷¹Ga{ ¹⁹F} and ⁷¹Ga{ ³¹P} rotational echo double resonance (REDOR) measurements. ¹⁹F NMR results indicate that the local environment of F is dominated by Ga³⁺ and the divalent cations, and the absence of P-F bonding. The latter is also confirmed by while ³¹P{¹⁹F} REDOR results; furthermore, ³¹P INADEQUATE and Raman results give no evidence of P-O-P linkages. Thus, the glass network is largely sustained by bridging oxygen atoms via P-O-Ga linkages, as intended by the compositional design of this glass system.

Acknowledgements: FAPESP - grants 2013/07793-6 (CeRTEV-CEPID program) and 2021/06370-0 (Postdoc grant)