Surface Characterization of Titanium Oxide of Dental Implants

T. P. Busquim\(^{(1)*}\), C. N. Elias\(^{(2)}\) and S. E. Kur\(^{(1)}\)

\((1)\) PPGCEM – Programa de Pós Graduação em Ciência e Engenharia de Materiais – Departamento de Engenharia de Materiais – UFSCar - São Carlos – SP, e-mail: thais.busquim@gmail.com

\((2)\) IME – Instituto Militar de Engenharia – Departamento de Engenharia de Materiais. Rio de Janeiro – RJ, e-mail: elias@ime.eb.br.

* Corresponding author.

Abstract – To achieve improved osseointegration, there have been many efforts to modify the surface composition and topography of dental implants. The purpose of this study was to investigate the surface chemistry of a titanium oxide layer on commercially micro arc oxidized - MAO (Vulcano Actives\(^{®}\)) – Fig. 1, acid etched (Master Porous\(^{®}\)) – Fig. 2 and discrete deposition of nanocrystalline particles – Fig. 3, of dental implants, manufactured by Conexão Sistemas de Prótese (Brazil).

Development in contemporary implant dentistry aims to create appropriate materials to replace teeth, recovering the patient’s esthetics, and having a positive influence on their phonetics and mastication function [1]. The high success rate of endosteal titanium dental implants for oral reconstruction has been attributed to the formation of a direct bone-implant interface with no intervening soft tissues [1].

Surface modification of titanium implants can increase adhesion, migration and cell proliferation and thus accelerate the osseointegration process [2-3].

Fluorides have also been used in chemical and topographic implant surface changes. Treatments with fluorides have demonstrated a higher capacity for nucleation of Ca P crystals in vitro testing and higher osseointegration resistance in vivo, as tested by removal torque [4].

References


