

Rio de Janeiro Brazil September 20 - 25

## First-order phase transitions in $CaFe_2As_2$ and phase separation in superconducting $Ba_{0.5}K_{0.5}Fe_2As_2$ and $Sr_{0.5}Fe_2As_2$ single crystals

E. M. Baggio-saitovitch<sup>(1)\*</sup>, D. R. Sánchez<sup>(2)</sup>, M. Alzamora<sup>(1)</sup>, S. L. Bud'ko<sup>(3)</sup>, P. F. Candield<sup>(3)</sup>, G. F. Cheng<sup>(4)</sup> N. L. Wang<sup>(4)</sup>

- (1) Coordenação de Física Experimental de Baixas Energias, Centro Brasileiro de Pesquisas Físicas, Urca, Rio de Janeiro 22290-180, Brasil. e-mail: elisa@cbpf.br.
- (2) Instituto de Física, Universidade Federal Fluminense, Niterói, Rio de Janeiro 24210-346, Brasil.
- (3) U.S. DOE and department of Physics and Astronomy, Ames Laboratory, Iowa State University, Iowa 50011,USA.
- (4) Institute of Physics, Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100080, Peoples Republic of China.
- (5) Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA.
- \* Corresponding author.

**Abstract** – <sup>57</sup>Fe Mössbauer experiments in Ba<sub>0.5</sub>K<sub>0.5</sub>Fe<sub>2</sub>As<sub>2</sub> and Sr<sub>0.5</sub>Na<sub>0.5</sub>Fe<sub>2</sub>As<sub>2</sub> single crystals show the coexistence of a paramagnetic (superconducting phase) and a magnetic phase with strong static magnetic order. For the non superconducting CaFe<sub>2</sub>As<sub>2</sub> a magnetic hyperfine field B<sub>hf</sub> was observed at the <sup>57</sup>Fe nucleus below TN~170K indicating a first-order magnetic transition.

Recently, the ternary  $A_{1-x}M_xFe_2As_2$  (A=Ca, Sr, Ba and Eu; M=K and Na) were found to shown similar structural, magnetic and superconducting properties with the related RFeAsO<sub>1-x</sub>F<sub>x</sub> [1]. The Ca<sub>2</sub>Fe<sub>2</sub>As undergoes a first-order high-temperature tetragonal to low-temperature orthorhombic phase transition at T<sub>S</sub>~170K [2]. Concomitant with the structural transition the Fe moments order in a commensurate AFM structure [3]. This compound becomes superconducting either under moderate applied pressure and Na-doping [4,5]. The Ba<sub>0.5</sub>K<sub>0.5</sub>Fe<sub>2</sub>As<sub>2</sub> and Sr<sub>0.5</sub>Na<sub>0.5</sub>Fe<sub>2</sub>As<sub>2</sub> are superconductors with T<sub>c</sub> ~37 K and ~35 K, respectively.  $\Box$  SR measurements have been shown a coexistence of superconductivity and phase separated static magnetic order in these compounds [6]. Mössbauer spectroscopy was used to investigate the magnetic and structural phase transition of single crystal CaFe<sub>2</sub>As<sub>2</sub> as well the occurrence of phase separation in superconducting single crystals of Ba<sub>0.5</sub>K<sub>0.5</sub>Fe<sub>2</sub>As<sub>2</sub> and Sr<sub>0.5</sub>Na<sub>0.5</sub>Fe<sub>2</sub>As<sub>2</sub>.

A mosaic of single crystal plates, with the *c* axes parallel to  $\gamma$ -ray direction, were used to perform the Mössbauer measurements. Room temperature measurements shown the main component of electric field gradient V<sub>zz</sub> is along *c* axis for these ternary compounds. For the non superconducting CaFe<sub>2</sub>As<sub>2</sub> a magnetic hyperfine field B<sub>hf</sub> was observed at the <sup>57</sup>Fe nucleus below T<sub>N</sub>~170K indicating a first-order magnetic transition. Low temperature spectra fittings lead to V<sub>zz</sub> >0 with Fe moments lying in the (*a*,*b*) plane. The quadrupole splitting  $\Delta E_Q$  values showed a discontinuity at ~170K showing that structural and magnetic transition occurs concomitantly. The Mössbauer spectra of Ba<sub>0.5</sub>K<sub>0.5</sub>Fe<sub>2</sub>As<sub>2</sub> and Sr<sub>0.5</sub>Na<sub>0.5</sub>Fe<sub>2</sub>As<sub>2</sub> shown a unique crystal site for Fe at room temperature however at 4.2K the presence of two phases is clearly observed. For Ba<sub>0.5</sub>K<sub>0.5</sub>Fe<sub>2</sub>As<sub>2</sub> ~ 51% of Fe are in a paramagnetic state (superconducting phase) while the remaining are in a magnetic phase with small magnetic moments (~0.15µB). For Sr<sub>0.5</sub>Na<sub>0.5</sub>Fe<sub>2</sub>As<sub>2</sub> only ~12% of Fe are paramagnetic, the remaining Fe are in a magnetic state with magnetic moments large as ~0.57µB. For Sr<sub>0.5</sub>Na<sub>0.5</sub>Fe<sub>2</sub>As<sub>2</sub> only ~12% of Fe are paramagnetic, the remaining Fe are in a magnetic state with magnetic moments large as ~0.57µB.

## References

- [1] C. Krellner, et al., Phys. Rev B 78 (2008) 100504.
- [2] N. Ni, et al., Phys. Rev. B 78 (2008) 014523 .
- [3] A. I. Goldman, et al., Phys. Rev B 78 (2008) 100506.
- [4] M. S. Torikachvili, et al., Phys. Rev Lett. 101 (2008) 057006 .
- [5] P. M. Shirage, et al., Appl. Phys. Express 1, (2008) 081702.
- [6] T. Goko, et al., arXiv :0808 (2008)1425.