Improving Light-harvesting of Nanocrystalline $\mathbf{T i O}_{2}$ in DSC

H. Choi, ${ }^{\text {a }}$ S. Kim, ${ }^{\text {a }}$ S. O. Kang, ${ }^{\text {a }}$ J. Ko, ${ }^{\text {a }}$ M. S. Kang, ${ }^{\text {b }}$ J. N. Clifford, ${ }^{\text {c }}$ A. Forneli, ${ }^{\text {c }}$ M. K. Nazeeruddin, ${ }^{\text {d }}$ M. Grätzel ${ }^{\text {d }}$ and E. Palomares ${ }^{\text {c }}$
a. Department of New Material Chemistry, Korea University Jochiwon, Chungnam 339-700 (Korea)
b. Energy \& Environment Lab., Samsung Advanced Institute of Technology (SAIT) Yongin, 446-712
(Korea)
c. Institute of Chemical Research of Catalonia (ICIQ) Avenguda Països Catalans, 16, Tarragona 43007 (Spain)
d. Laboratory of Photonics and Interfaces, École Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland)

The Grätzel cell offers one solution to the problem of meeting the worlds future energy needs in a green and renewable way. It consists of a working electrode of dye-sensitized nanocrystalline semiconductor film (usually TiO_{2}) that is deposited onto a conducting support. A platinum counter electrode and holeconducting medium (usually $\mathrm{I}^{-} / \mathrm{I}_{3}{ }^{-}$redox couple) that connects the working and counter electrodes completes the cell. Such devices have shown promising efficiencies of up to 11% recorded. ${ }^{1-3}$ Efforts to improve upon this efficiency are manifold ranging from modifications to the nanocrystalline film, dye sensitizer and redox couple. One of the many approaches we are investigating involves improving the spectral response of the sensitized film by the co-sensitization of 2 or more different dye sensitizers onto the TiO_{2}, improving the current and voltage of the cell. ${ }^{4}$

References

1. M. Grätzel. Prog. Photovolt: Res. Appl, 2006, 14, 429
2. F. Gao, Y. Wang, J. Zhang, D. Shi, M. Wang, R. Humphry-Baker, P. Wang, S. M. Zakeeruddin and M. Grätzel. Chem. Commun., 2008, 2635
3. Y. Cao, Y. Bai, Q. Yu, Y. Cheng, S. Lui, D. Shi, F. Gao and P. Wang. J. Phys. Chem. C 2009, 113, 6290
4. H. Choi, S. Kim, S. O. Kang, J. Ko, M. S. Kang, J. N. Clifford, A. Forneli, M. K. Nazeeruddin, M. Grätzel and E. Palomares. Angew. Chem. Int. Ed, 2008, 47, 1
