

11th International Conference on Advanced Materials Rio de Janeiro Brazil September 20 - 25

The performance of sulphurized TiO₂/In₂S₃/CulnSe₂ solar cells.

M. Valdés¹, A. Goossens², M. Vázquez^{1*}

- (1) División Corrosión, INTEMA, Facultad de Ingeniería, Universidad Nacional de Mar del Plata J. B. Justo 4302 B7608FDQ Mar del Plata, ARGENTINA
- (2) Optoelectronic materials, Faculty of Applied Sciences, Delft University of Technology Julianalaan 136, 2628 BL Delft, The Netherlands
- * Corresponding author.

Abstract – An In_2S_3 buffer layer has been prepared by spray – pyrolysis on TiO_2/TCO glass substrates. On top of them $CuInSe_2$ films have been electrodeposited from a single bath solution. CISe films have been deposited potentiostatically using a deareated electrolyte at different potentials. Each layer has been studied by electron microscopy, electrochemical impedance and optical absorption spectroscopy. After a thermal annealing stage in a sulphur atmosphere at 550°C for 10-30 minutes the crystallinity of the resulting chalcogenide is excellent. In particular the nominal crystal structure and the band gap of 1.4 eV are found and a clear photoconductivity response is obtained.

 TiO_2 has been prepared by spray-pyrolysis, using TCO glass as substrate. The temperature of the hot plate is set between 350 – 375°C, later increased to 450 °C for 30 minutes to enhance the crystallinity.

 In_2S_3 has been sprayed on top of this layer. The hot plate is set on 300 °C and kept 30 minutes after the spray. The In/S ratio was fixed to 1.2/8.

CulnSe₂ (CISe) is then electrodeposited at room temperature from a single aqueous bath containing CuCl₂, InCl₃ and SeO₂. The deposition is potentiostatic, with the potential ranging from -0.8 to - 1.1 V vs, SCE. Homogenous, black films of CISe are thus obtained.

The complete device was annealed at 550 °C varying the time between 10-30 minutes. 0.5 g of sulphur are placed in the annealing chamber and heated at 350 °C (melting starts at around 200-250°C). The samples are placed in a "cold zone" (100 °C) of the tube and when the temperature reaches 550 °C they are moved to the "annealing zone" and kept there for a fixed time. Then they are moved back to the cold zone of the tube. Nitrogen is flashed during all the annealing. This thermal treatment changes the CuInSe₂ structure to a CuInS_(2-x)Se_x (CISSe). To evaluate the transformation from CISe to CISSe films have been deposited on Mo substrates and annealed in the same conditions as those of the films deposited on TCO/TiO₂/In₂S₃ substrates.

After the annealing treatment, the samples are etched in 0.5 mol/L KCN for several minutes to remove secondary phases (CuSe or Cu_2Se) that are detrimental for the devices. X-ray analysis shows a complete transformation of the CuInSe₂ to CuInS₂ composition as is indicated in the change in the (112) amorphous CISe peak to a high cristallinity (112) CIS structure. This is a key step which governs the final composition of the chalcogenide layer and determines the overall performance of the solar cell.

. Figure 1 presents XRD patterns of the as deposited CISe films on Mo/glass substrate and the transformation that occurs after annealing in sulphur at 550 °C during 30 minutes. As can be seen, a complete transformation takes place. SEM micrographs of CIS films show an homogenous material with regular-size particles (Figure 2). A promising solar cell device is shown in Figure 3. A Xe lamp was used a light source. In spite of the low values of the open circuit potential (V_{oc}) and the short-circuit current density (J_{sc}) this is a starting-point result, from which we can continue working in improving the conversion efficiency.

550°C during 30 min.

20 / degrees Figure 1: XRD patterns of CISe films deposited on Mo/glass substrates. (-) As deposited. (-) Annealed in sulphur at t -1 V vs. S

Figure 2: SEM image of annealed CISe precursor. The CISe film was deposited at -1 V vs. SCE during 1 hour, annealed at 550 °C for 30 minutes in sulphur atmosphere.

Figure 3: I-V curve (dark vs. illumination) performed on TCO/TiO₂/In₂S₃/CuInSe₂. The CISe film was deposited at -1.1 V vs. SCE during 1 hour, annealed in sulphur minutes.