Red-emitting magnetic mesocomposites of Agdecorated Fe₃O₄@SiO₂ nanoflowers coated with Y₂O₃:Eu³⁺: Study of iron oxide induced luminescence quenching

Latif Ullah Khan^{1,2}, Hermi Felinto Brito², Diego Muraca¹, Luelc Sousa da Costa¹, Maria Cláudia França da Cunha Felinto³

¹Centro Nacional de Pesquisa em Energia e Materiais, ²Instituto de Química, Universidade de São Paulo, ³Instituto de Pesquisas Energéticas e Nucleares

e-mail: latifkhn@iq.usp.br

The new multistep approach for co-assembling magnetic iron oxide nanoflowers with red-emitting Y_2O_3 : Eu³⁺ to form magneto-luminescent mesocomposites was reported. The Fe_3O_4 core particles prepared by solvothermal method were layered with SiO₂ shell and decorated with small size spherical Ag nanoparticles as well as further coated with Y_2O_3 : Eu³⁺ lluminophore. The nanoflower shape Fe₃O₄ core of size ~110 nm and crystalline cubic structure of bifunctional ironoxide@ Y_2O_3 : Eu³⁺, Fe₃O₄@SiO₂@ Y_2O_3 : Eu³⁺ and Fe₃O₄@SiO₂-Ag@ Y_2O_3 : Eu³⁺ (1 mol%) mesocomposites were confirmed from X-rays diffraction, EDS spectra and transmission electron microscopy images. The static magnetic measurements supported and manifested nonsuperparamagnetic behavior of the materials at 300 K. The iron oxides are usually luminescent guencher, therefore, the photoluminescence properties based on the emission spectral data and luminescence decay curves were studied. In addition, experimental intensity parameters (Ω_{λ}) , lifetimes (τ) , emission quantum efficiencies as well as radiative $(A_{\mbox{\tiny rad}})$ and non-radiative $(A_{\mbox{\tiny nrad}})$ decay rates were also calculated, in order to probe the local chemical environment of the Eu^{3+} ion and better understand the phenomena of iron oxide induced luminescence guenching. The highest value of the quantum efficiency = 74 %, for the a-Fe₂O₃@Y₂O₃:Eu³⁺ (1 mol%) among all the luminescent and magnetic mesocomposites suggests that Fe₂O₃ is induced lower luminescence quenching then Fe_3O_4 . Though, the thin layer of SiO₂ spacer is caused of increase the quantum efficiency, whereas the Ag is further enhanced the luminescence quenching by energy transfer form Eu^{3+} ion to the Ag nanoparticles. These novel Eu^{3+} mesocomposites may act as a red emitting layer for magnetic and light converting molecular devices.