Multicolor Tunability and quantum cutting of ternary ion activated LaF₃ Nanophasphores: Downconversion and Magnetic Behavior

<u>Navadeep Shrivastava</u>^{1,2}, Latif Ullah Khan³, Jose Marcelo Vargas⁴, Carlos Alberto Ospina Ramirez³, José Antônio Huamaní Coaquira⁵, Giorgio Zoppellaro⁶, Hermi Felinto Brito², Maria Cláudia França da Cunha Felinto⁷, Surender Kumar Sharma¹

¹Universidade Federal do Maranhão, ²INSTITUTE OF CHEMISTRY, UNIVERSITY of SAO PAULO, ³Brazilian Nanotechnology National Laboratory, ⁴4Consejo Nacional de Investigaciones Científicas y Técnicas; Centro Atómico Bariloche, ⁵Universidade de Brasília, ⁶Regional Centre for Advanced Technologies and Materials, Palacky University, ⁷University of Sao Paulo

e-mail: enavadeep@gmail.com

The luminescence-tuneable multicoloured LaF_3 :xCe³⁺,xGd³⁺,yEu³⁺ (x = 5; y = 1, 5, 10 and 15 mol-%) nanoparticles have been synthesized via a new low cost polyol method. Powder X-ray diffraction and high resolution transmission electron microscopy confirms the hexagonal phase of $LaF_3:xCe^{3+},xGd^{3+},yEu^{3+}$ nanophosphors with average sizes (oval shape) from 5-7 nm. Energy-dispersive Xray spectroscopy analyses show the uniform distribution of Ce^{3+} , Gd^{3+} and Eu^{3+} dopants in the LaF₃ host matrix. The photoluminescence spectra and electron paramagnetic resonance measurement guarantee the presence of Eu^{2+} , corroborated through DC susceptibility measurements of the samples displaying the paramagnetic behavior at 300 K, whereas a weak ferromagnetic ordering at 2 K. The non-radiative energy transfer processes from the $4f^{1}/4f5d^{1}$ state (Ce³⁺) to the intraconfigurational 4f excited levels of rare earth ions and simultaneous emissions in visible region from the $4f^{6}5d^{1}$ (Eu²⁺) and ⁵D (Eu³⁺) emitting level, leading to overlapped broad and narrow emission bands, have been proclaimed. The enrgy transfer mechanism proposes involvement of Gd³⁺ ion sub-lattice as bridge and finally trapping by $Eu^{2^{+/3^{+}}}$, upon excitation of $Ce^{3^{+}}$ ion. The calculation of experimental intensity parameters $(W_{\mbox{\tiny 2,4}})$ have been discussed and highest emission quantum efficiency ($\eta = 85\%$) of Eu³⁺ ion for y = 10 mol-% sample is reported. The advantageous existence of Eu^{2+}/Eu^{3+} ratio along with variouslydoped nanomaterials described in this work, exhibit tunable emission color in the blue-white-red regions, highlightening their potential application in solid state lighting devices, scintillation, multiplex detection.