Combinatorial Investigation of Magnetoluminescence Properties of Bi-functional Nanostructures of Iron-oxide@Ternary doped Rare-Earth Fluorides

<u>Surender Kumar Sharma</u>¹, Navadeep Shrivastava¹, Latifullah Khan², Zahid Khan², Jose Marcelo Vargas³, Oscar Moscoso Londoño⁴, Carlos Alberto Ospina Ramirez⁵, Hermi Felinto Brito², Yasir Javed⁶, Maria Cláudia França da Cunha Felinto⁷, Alan Silva de Menezes¹, Marcelo Knobel⁴

¹Universidade Federal do Maranhão, ²Universidade de São Paulo, ³Bariloche, ⁴UNICAMP, ⁵Centro Nacional de Pesquisa em Energia e Materiais, ⁶UNiversity of Agriculture, Faisalabad, ⁷University of Sao Paulo

e-mail: surender76@gmail.com

of novel triply-doped bifunctional The preparation $Fe_{3}O_{4}/ZnS@LaF_{3}:xCe^{3+},xGd^{3+},yTb^{3+}$ (x = 5; y = 5, 10 and 15 mol.%) nanocomposites with efficient optical and magnetic features have been reported. The ZnS semiconductor functionalized Fe_3O_4 particles were coated with LaF_3 :RE³⁺ materials via chitosan assisted co-precipitation method. The iron oxide of size \sim 7.2 nm and trigonal structure of bifunctional nanostructure were confirmed from x-rays diffraction and high resolution transmission electron microscopy. The static magnetic measurements supported and manifested superparamagnetic behavior of the materials at 300 K. A broad emission band was observed in the blue region (400-550 nm) due to the sulphur vacancy on the surface of Fe_3O_4/ZnS nanocomposite. For triply doped bifunctional nanostructure, the excitation spectra revealed broad absorption bands centered at around 270 nm, which attributed to the $4f({}^{7}F_{7/2}) \rightarrow 5d$ interconfigurational transition of the Ce³⁺ ion accompanied by narrow absorption lines arising from the 4f-4f intraconfigurational transitions of the Tb^{3+} ion. The emission spectra of the nanocomposites showed characteristic narrow emission lines assigned to the ${}^{5}D_{4}$, ${}^{7}F_{1}$ transitions (J = 6-0) of the Tb³⁺ ion. The energy transfer process from the $Ce^{3+-}Gd^{3+-}Tb^{3+}$ ions was also presented and discussed. Further, the structural, photoluminescence and magnetic properties of $Fe_3O_4/ZnS@LaF_3:RE^{3+}$ suggested efficient candidature for the magnetic light-converting molecular devices (MLMCDs) and high energy radiation detection.