Influence of density on mechanical properties of MOR and MOE for wood of *Pinus elliottii* Engelm.

<u>W. G. Güths¹</u>, M. L. de Peres¹, D. A. Gatto¹, D. M. Stangerlin², C. R. Haselein³, L. Calegari⁴, R. Trevisan³.

¹Universidade Federal de Pelotas, Centro de Engenharias, RS, Brazil ²Universidade Federal do Mato Grosso, Campus Sinop, MT, Brazil ³Universidade Federal de Santa Maria, Centro de Ciências Rurais, RS, Brazil ⁴Universidade Federal de Campo Grande, Centro de Saúde e Tecnologia Rural, PB, Brazil

This study aimed to describe the wood of *Pinus elliottii* Engelm. coming from young reforestation through some physical and mechanical properties. For this, it was determined the density at 12% humidity and checked its influence on the modulus of rupture (MOR) and modulus of elasticity (MOE). The specimens for bending test were made according to ASTM D 143-94 (1995) and conditioned in an incubator to stabilize the moisture content of 12%. We found the average values of 555 kgf.cm⁻² and 73266 kgf.cm⁻² for MOR and MOE, respectively. The average value of apparent density of 12% was 0.43 g.cm⁻³. The IPT (1989) reports an apparent density of 15% from 0.48 g.cm⁻³ and basic density of 0.40 g.cm⁻³ for the same species. The WOOD HANDBOOK (1999) reported a basic density of 0.59 g.cm⁻³, a MOE of 139701.09 kgf.cm⁻² and a MOR of 1149.22 kgf.cm⁻², all properties a moisture content 12%.

Table 1: regression models for MOE and MOR as a function of density to 12%.

Property	Equation	\mathbf{R}^2_{aj}	Syx	F	Р
Modulus of Rupture	MOR= -105.922+1553.52*ME	62	65	30	0.0001
Modulus of Elasticity	MOE= -10213.8+187625.0*ME	21	18243	6	0.0317

Where: MOE = modulus of elasticity (kgf.cm⁻²); ME = density (g.cm⁻³), MOR = modulus of rupture (kgf.cm⁻²).

Thus, the regression models defined in Table 1 indicate that as the density increases, they also increase the values of MOR and MOE. We also conclude that the density has increased determination on the MOR, considering that the R^2_{aj} for this property was 62%, while for the other was only 21%. Defining then from the value of P <=0.05, we can say that there is a significant relationship of the apparent density to 12% with MOR and MOE for the species studied.

Keywords: bending, wood quality.

[1] ASTM – American Society for Testing and Materials. Standard methods of testing small clear specimens of timber, D 143-94. Philadelphia, 1995a.

[2] IPT - INSTITUTO DE PESQUISAS TECNOLÓGICAS DO ESTADO DE SÃO PAULO. Sistema de Informações de Madeiras Brasileiras. São Paulo: IPT, 1989b. 291p. Disponível em: http://www.ipt.br/informacoes_madeiras3.php?madeira=7>.

[3] WOOD HANDBOOK – Wood as an engineering material. Gen. Tech. Rep. FPL–GTR– 113. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. 1999. 463 p.

e-mail: <u>william_guths@hotmail.com</u> Adress: Avenida Cidade de Lisboa, 623 Apartamento 104. Fragata. Pelotas, RS, Brazil.